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Biodynamic Modelling of the Finger 
 
1. Objective 
 
According to Task 3.3 named “Biodynamic modelling of hand-arm system”, the work content 
has changed from the original description. In the first proposal, it had been proposed to 
develop a model of the upper limb (including the hand, the arm and the shoulder) and to solve 
the inverse problem formulated as : calculate the internal forces (exerted by the muscles) 
knowing the external forces (gripping, pushing, loads…). Because the flexibility of the human 
tissues is not taken into account, this type of model is of interest to assess the impedance of 
the upper limb at frequencies below about 50 Hz. However neurological and vascular effects 
which constitute the main target of this contract are mainly observed at higher frequencies. 
So, any correlation nor comparison could be expected between experimental work of WP3 
and the model output.  

Therefore it has been decided to focus on the modelling of the dynamic behaviour of soft 
tissues: the idea is now to develop a model able to predict how vibration propagate in the 
human tissues and to calculate internal mechanical properties such as pressure-field or strain, 
whose measurement is technically impossible to perform. The main interest of such a model 
will be to correlate the physiological response to vibration (output from WP3.1 and WP3.2) 
with local high levels of pressure or strain. In that way, it is expected to bring keys to the 
understanding of the vascular and neurological effect of vibration.  

A model was elaborated to predict the mechanical response for a pre-stressed finger submitted 
to vibration.  

 
2. Method 
 
The Finite Element Method (FEM) was chosen to achieve calculations of local internal 
quantities such as stresses or strains inside the finger. It was assumed that these quantities are 
correlated with physiological troubles due to vibration exposure; they are difficult to obtain by 
measurements, thus their prediction by means of numerical simulations becomes of interest to 
have a better understanding of physiological troubles due to vibration exposure. 

A first model of a forefinger cross section was developed. This model is limited to two-
dimensional analysis. Thus, INRS worked at the extension of this model towards a 3D model 
for the forefinger. Real finger geometries were digitised and discretized in meshes to perform 
FEM calculations. INRS used a commercial FEM software to perform the simulations with 
the 3D model but difficulties were encountered to make the model stable. Consequently INRS 
performed some calculations with the open source software Code Aster for FEM analysis to 
investigate its capabilities. This software, released under the General Public Licence, showed 
some interested capabilities and offered possibilities to develop adapted numerical routines to 
achieve our objective. But these developments were not planned in the project and would 
require too much time and costs. Finally efforts were devoted to the response study of a 
forefinger 3D local model with simplified geometry. Only soft tissues between the vibrating 
rigid plate and the bone were considered and modelled as a parallelepipedic volume with 
viscohyperelastic behaviour. 
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3. Results 
 
3.1 Two-dimensional Model 

 
J. Wu in [1] has developed a finite element model in order to investigate theoretically the 
effects of static compression on the vibration modes of a fingertip. An in-plane finite element 
model of the fingertip tissue was formulated on the basis of the anatomical structure and the 
non linear elastic material properties of the soft tissue. The vibration modes of a fingertip 
model were analysed under different deformation states. Results show that the modal 
vibration characteristics of the fingertip increase with the preload. All calculations were 
performed with the commercial Finite Element software Abaqus. The first task to achieve for 
INRS was to look at the feasibility of these calculations by using Samcef, which is the Finite 
Element Program available at INRS. Thus an in-plane model of an elliptical cross-section at 
the fingertip was build. The fingertip was assumed to be symmetric around the bone. Thus, 
only half of a fingertip was modelled, as shown in figure 1. 

 

   
Fig.1:Figure 1: Mesh for an half cross-section at the fingertip m 

 
The model is composed of a rigid bone surrounded with viscohyperelastic soft tissues. The 
surface of the soft tissue is assumed to be in contact with a rigid plate, representing the 
vibrating machine. The rigid plate is subjected to a prescribed vertical displacement to realise 
a pre-constraint in the soft tissue occurring during gripping the machine or its handle. A 
modal analysis of the pre-stressed soft tissues is performed for several level of compression 
and the mode shapes were computed (figure 2). All the calculations were compared to the 
results obtained by J. Z. WU [1] [2] and identical conclusions could be drawn. Effects of the  
static deformation state on the vibration modes were observed. 

   

                           
1.5 mm deflection , f = 52 Hz                     3 mm deflection, f = 65 Hz 

 

Figure  2 : 1st mode shape for two different deflections...  
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3.2 Towards a 3-dimensional Model 
 
The dynamical response of a pre-compressed forefinger was modelled by an in-plane model 
representing a cross-section of a forefinger. This simple model was a first step to model the 
local behaviour of the pre-compressed forefinger, at the fingertip for example. To extend the 
model prediction to the behaviour of the whole-finger, the same 2D-model may be used with 
the assumption that the forefinger cross-section does not vary along the finger axis. This 
assumption is obviously wrong and the 2D model may produce results far from experimental 
measurements. Therefore a three-dimensional model has been worked out taking into account 
a real 3D geometry. This part of the work was carried out during a 6 month student engineer’s 
trainee to obtain the degree of master in mechanical modelling and simulation from 
University Claude Bernard in Lyon [6]. The 3D model comprised the three finger phalanxes 
surrounded by soft tissues. Geometry files of the three phalanx have been downloaded from 
the website [3]. The outer surface of a forefinger, i.e. the skin, was digitised and numerically 
processed in order to include the phalanx geometry in the digitised outer finger surface. A 3D 
geometry model was thus obtained and prepared to be meshed. 
   

 

 
Figure 3: Longitudinal section of the three-dimensional forefinger mesh 

 

The mesh was automatically generated using hexahedra elements with the elements size 
parameterised. The figure 3 shows a longitudinal section of the forefinger mesh. Blue parts 
corresponds to the three phalanx sections and green elements models the soft tissues volume. 
Visco-hyperelastic constitutive equations used in [1,2] are used to model the behaviour of the 
soft tissues. Bone behaviour is supposed to remain rigid. Therefore nodes on bone outer 
surface are interconnected with rigid connections. Loading conditions like displacement 
functions are applied on these nodes in order to simulate a finger motion. A rigid steel plate or 
a cylinder is added to take into account of the machine handle. Soft tissues deformations 
simulations were then performed but no solution was obtained due to many numerical 
problems. Some simulation tests were performed with another Finite Element Program, which 
is available in the frame of a General Public licence [4], but first results could not be achieved 
for all loading cases due to numerical instabilities. Secondly results which were obtained, 
were not obtained with a sufficient trust level to be published. Several reasons are likely to 
explain why the calculations did not converge, the main reason being probably the use of 
sophisticated constitutive equations to model time-dependant (visco) non-linear (hyper) 
elastic behaviour of soft tissues. 
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3.3 Analysis of a simplified 3-dimensional Model  
 

In a third step, a simplified 3D model was developed and investigations were focused on the 
constitutive equations used to describe the viscohyperelastic deformation behaviour of soft 
tissues. Only soft tissues between the vibrating rigid plate and the distal phalanx were 
considered and modelled as a parallelepipedic volume viscohyperelastic behaviour (see 
Figure 4).  

 
Fig. 4: Longitudinal finger section. The area used for FE analysis is the 
red grid volume (10 x 10 x 4 mm). 

 

3.3.1. The time-independent non-linear elastic deformation (hyperelastic) 
 
Models used to describe hyperelastic behaviour are based on the definition of an hyperelastic 
potential W. The Samcef code offers several possibilities such as Money-Rivlin, Hart-Smith, 
Ogden or Hyperfoam to simulate hyperelastic behaviour. The Hyperfoam definition is 
commonly used to model finite deformation for structure made with plastic foam like seat 
cushion. This potential was also chosen in [1,2] to model the behaviour of soft tissues in a 
finger. The potential W is expressed as function of principal stretch ratios λi and material 
parameters µi, αi and βi. 
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Based on this definition, the force required to extend or compress a parallelepipedic volume in 
one direction is given as a function of the brick length in the force direction. This force is 
expressed as: 
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where : 
 F : applied force 
 l: length of the deformed brick 
 l0: initial length of the brick 
 S0: Cross-section of the brick 
 ν, αi, µi: material parameters 
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This equation is valid for compression and tensile loading. First, the displacement/force 
relation was checked to the relation obtained by a finite element calculations performed with 
Samcef with material parameters given in [1,2]. Both calculations led to the same results. In a 
second step, the relation (eq. 2) was used to investigate sensitivity of material parameters on 
the displacement-force relation. This study shows that modifying of +/-2% the value of some 
material parameters given in [1,2] led to large modification of the displacement-force relation. 
For some cases, a light modification of material parameter led to abnormal displacement-force 
relation such as a positive force for a compressed state.   

The compressibility behaviour was investigated by comparing previous results with forces 
resulting from an uniaxial stressed material cube confined in a rigid container, i.e. the 
transversal displacement at the lateral faces are fixed. Figure 5 shows the comparison between 
confined and unconfined state and large differences are obtained during compression test. 

 
 
Figure 5: Comparison of the displacement-force relation during a tension-
compression test applied on a confined and unconfined cube. 

 
The shear force required to deform a cube was also expressed as a function of the lateral 
displacement, material and geometry parameters. Analytical results are in agreement with 
those obtained by Finite Element calculations and no singularity was found with this material 
parameter set. 

 
3.3.2. The time-dependent non-linear elastic deformation (viscohyperelastic) 
  
According to [5], the stress is computed at a given time t by:  
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where σ is the Kirchhoff-Treffz stress, E the Green strain and W is the previous defined 
potential. This equation is an hereditary integral formulation. A serial function was selected 
for g. The so-called Prony series were used: 
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where: 

ωk and τk are weighting coefficients and characteristic times. 

The deformations are defined as follows: 
λ=1+ε   2*5.0 εε +=E   λ²=1+2E   eq. 5 

 
where: 

λ: stretch ratios 
E: Green deformation 
ε: nominal strain    

 
Based on equations 3. and 4., the force F required to compress a parallelepipedic volume with 
a constant compression rate in one direction was expressed as a time function [8].  
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where: 
l(t)=l0-v0t  
v0 : displacement velocity 
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First, the displacement/force expression 6 was checked by comparing with the force obtained 
by a finite element calculation performed on the finger model with a cross section of (10 x 10) 
mm² and a length of 4 mm in the force direction with material parameters given in [1,2]. 
Calculations were conducted up to 3 mm compression reached in 10 seconds. Both 
calculations led to the same results. Using the expression 6, the maximal force obtained at 3 
mm compression was calculated for several compression time. Figure 6 shows that the 
maximal force decreases with increasing compression time and illustrates the relaxation 
phenomenon.  

 
Figure 6. Influence of compression time on the force at 3 mm compression on  a 
brick (cross section: (10 x 10) mm²; initial length in the force direction: 4 mm)  
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In a second step, the temporal evolution of the force was computed during a two-step test, 
with an initial compression test at constant deformation rate from time 0 to time t0 and a 
consecutive step at constant strain i.e. a relaxation test. The force during the relaxation test 
was computed as: 
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where: 

t0: Duration of the compression test at constant strain rate 

λ0: stretch ratio at time t0  
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Figure 7. Temporal evolution of the applied force; from 0 to 10 seconds, the brick is compressed 
from 0 to 3 mm compression; from 10 to 35 seconds, the compression is maintained at 3 mm; 
brick of cross section: (10 x 10) mm² and initial length in the force direction: 4 mm.  
 

According to figure 7, the expression 7 and finite element calculations give identical results. 
This is here to notice that the finite element program shows some numerical instabilities to 
calculate the force for at a time higher than 35 seconds. This is not due to the behaviour’s law 
itself but to the fact that the steady state is reached. According to figure 7, the steady state is 
reached after about 20 second relaxation. The maximal force decreases from –11 Newtons to 
–7 Newtons. Viscosity effects on obtained forces are therefore significant.  

In a third step, the time history of the force was expressed for the following displacement 
loadcases including compression, relaxation and consecutive sinusoidal excitation. Time-
dependent effects of the non-linear elastic deformation (viscohyperelastic) were taken into 
account. Following displacement loadcases were applied (see figure 8): 

- compression from l0=4 mm to l1=1 mm during t0=10 seconds. 
- relaxation from t0=10 seconds to t1=20 seconds, i.e. the deformation was kept remained 

constant. 
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- consecutive sinus excitation at a frequency of 1. Hz with a displacement magnitude of 
0.01 mm. 
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Figure 8 : Displacement applied at the upper surface of the model, 
compression – relaxation – sinusoidal excitation 

 
The force during the vibration excitation was computed as: 
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            eq. 8 
where: 

µi, αi, ν: material parameters to describe hyperelastic behavior of soft tissues 
ωk, τk: are material parameters to describe viscous behavior of soft tissues 
S0: cross section of the model 
l0: initial length of the model 

•

0ε : deformation rate during compression 
λ0: elongation during relaxation 
∆U: displacement magnitude of the sinusoidal excitation 
ω: frequency of the sinusoidal excitation 
t0: time when compression stops and relaxation begins  
t1: time when relaxation stops and vibration begins 
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The figure 9 shows the response force calculated by the finite element software compared to 
its analytical expression given by eq. 8.      

   

   
Figure  9. Time-history of the force. Finite Element calculations and analytical expression 

 
3.3.3. Expression of the impedance 

   

The driving point impedance of the pre-compressed volume was expressed [8] as a function 
of the frequency by: 
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eq. 9 
The impedance given by eq.9 was validated by comparison between its results to that given 
by the equivalent finite element calculation. Both led to identical results. The impedance 
calculated by eq. 9 is also the impedance of the rheological model shown in figure 10 [8]. 

 
Figure  10: Rheological model equivalent to the finite element model 
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with: 
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Consequently the rheological model is equivalent to the finite element model, with 
calculations performed quasi-statically, i.e. masses and inertial forces are not computed. In 
order to include inertial effects in the model, an element mass was added in parallel to the 
previous model (see figure 11).  

   
Figure  11: Rheological model including inertial effects 

 
The impedance of the rheological model shown in figure 11 was expressed as [8]: 
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 eq. 10   

 
where ρ is the material density 
 
The impedance following eq. 10 is reported in figure 12 with following parameters: 
  
- Hyperelastic behavior (given by Wu [4,5]) : 

ν=0.4 
α1=4.941, α2=6.425, α3=4.712 
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µ1=-0.07594 MPa, µ2=0.01138 MPa, µ3=0.06572 MPa 
 

- Viscous behaviour: (given by Wu [4,5]) 
τ1=2.123 s, τ2=9.371 s 
ω1=0.148, ω2=0.252 

Density: 
ρ=1000 kg/m3 

 
- Model size :  

S0=100 mm², l0=5 mm 
 

- Initial compression :  
λ0 = 0,5 (correspondant à un effort de pré-compression de 0.4 N) 
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Figure 12 : Impedance of rheological model calculated with the expression 10 
   
The material parameters used to build the figure 12 were taken from Wu [4,5]. Testing 
parameters were taken as closed as possible from testing parameters given by Lundström in 
[7]. The resulting calculated impedance has the same shape than the measured impedance 
reported  by Lundström in [7]. Both calculated and measured resonance frequency were found 
at around 200 Hz. 
 
4. Discussion 
 
Finite Element Method for non linear problems require iterative algorithms to converge to  
numerical solutions. Commercial softwares embed more or less advanced routines to stabilize 
calculations but in all cases, no standard method is known to solve automatically non linear 
problems. In the frame of this work, the materials involved (human tissues) had complex 
behaviours and the loading conditions (compression + relaxation + vibration) applied to the 
finger were also complex to deal with. First attempts were made to perform finite element 
calculations with complex but realistic finger geometries but numerical problems make the 
model unstable and not sufficient robust to be used. In a second step, only soft tissues 
localised between the vibrating plate and the phalanx were included in the model The 3D 
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model, idealized as a parallelepipedic volume, offered the possibility to understand the way 
used by the Finite Element program to carry out calculations and to express analytically the 
applied force in response to the rigid plate motion. The following loadcases were applied. 
First the rigid plate moved at a constant velocity to compress the finger, then was kept still 
while soft tissues relaxed and finally vibrated at a given frequency. The driving point 
impedance at the rigid plate during the vibrating phase was calculated and compared to 
impedance measured by Lündström [7]. Calculated and measured frequency driving point 
impedances have identical shapes and in both cases a resonance frequency was found at 
around 200 Hz. 

The finite element method is adapted to predict strains and stresses inside a finger exposed to 
vibration, but the non-linear material behaviour makes calculations difficult to converge. A 
simpler uniaxial model derived from Finite Element calculations was developed and supplied 
results like impedances being in agreement with measured impedances reported in the 
literature. This is encouraging to keep on developing this type of model to have a better 
understanding of the mechanical response of fingers exposed simultaneously to static force 
and vibration and therefore to understand reasons for physiological troubles resulting from 
using vibrating tools. 
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