Risks of Occupational Vibration Exposures	Risk Vibr Vibr FP5 Pr Janua
am	Ann Fina
Title:	Longitu the Net whole-t
Authors:	Carel Hu Monique
Organisation:	Coronel Universit

Risks of Occupational Vibration Exposures

VIBRISKS

FP5 Project No. QLK4-2002-02650 January 2003 to December 2006

Annex 15 to Final Technical Report

Longitudinal epidemiological surveys in the Netherlands of drivers exposed to whole-body vibration

Carel Hulshof, Ivo Tiemessen, Monique Frings-Desen

Coronel Institute, Academic Medical Center, University of Amsterdam, The Netherlands

European Commission

Quality of Life and Management of Living Resources Programme Key Action 4 - Environment and Health

31st January 2007

SUMMARY

This document reports the findings of a prospective cohort study on dose-response relationship for low back pain (LBP) disorders in drivers exposed to whole-body vbration (WBV) in the Netherlands. The Dutch study population included at the start 574 male professional drivers employed in 13 different companies in agriculture, manufacturing industries, construction, public utility and transport industry throughout the country, using loaders, excavators and other earth moving equipment, mobile cranes, lorries, lawn mowing machines, asphalt machines, tractors, and small boats. At the 1st follow-up survey, 467 drivers were left from the original cohort.

Vibration measurements in a representative sample of the machines and vehicles used by the various driver groups were combined with real time observation of tasks and postures by a validated observation system, Palmtrac®. Personal, occupational and health histories of the included workers were collected by means of the Dutch version of a standardized questionnaire developed within the VIBRISKS project. In order to explore the evidence in the research about which preventive strategies are successful in reducing vibration magnitude in the workplace, a systematic review of the literature was carried out.

Daily vibration exposure in terms of vibration total value $A_v(8)$ in the companies ranged from 0.27 (small boats) to 1.20 ms⁻² r.m.s. (wheeled loaders). The period prevalence of the various LBP symptoms varied from 36.5% (episodes of acute LBP) to 57.8% (LBP in last 12 months). Over the follow-up period (2005-2006), the incidence of the various LBP symptoms ranged from 9.1% (acute LBP) to 25.7% (LBP in last 12 months). In general, the relation between the various LBP outcomes and the different measures of daily vibration exposure was inconsistent, except for daily driving time. Regarding the various measures of <u>cumulative</u> vibration doses, more significant relationships and trends with LBP outcomes were seen, in particular for the occurrence of an episode of acute LBP in the previous 12 months. The results of the exposureresponse analysis show, however, no consistency over the whole range of LBP outcomes. Several physical and postural load factors, as assessed by responses to the questionnaire, were significant predictors of LBP, but comparison of the questionnaire responses with real time observation showed that the time spent in some unfavourable postures or tasks were underestimated by the workers while other were overestimated. So far, a clear exposure response pattern could not be derived from the results of this study but pooling of the data of the different partners may give a more reliable picture. The real time observations at the workplace and the systematic review on vibration reduction were of help in tailoring a controlled intervention study that is still ongoing in a sub sample of the study population.

1

CONTENTS

Summary	1
1. Introduction	3
1.1 Objectives	3
2. Methods	5
2.1 Study population	5
2.2 Questionnaire	6
2.3 Measurement and assessment of vibration exposure	7
2.4 Assessment of physical load, tasks, and postures	8
2.5 Systematic review of strategies to reduce WBV exposure of d	rivers 9
2.6 Data analysis	10
3. Results	11
3.1 Vibration exposure	11
3.2 Health outcomes	13
3.2.1 Prevalence and incidence of LBP symptoms	13
3.2.2 LBP and personal characteristics	14
3.2.3 LBP and physical work factors	16
3.2.4 LBP and psychosocial variables	16
3.2.5 LBP and vibration exposure	18
3.2.6 LBP and other physical load factors	20
3.3 Evidence on strategies to reduce WBV exposure of drivers	22
3.4 Intervention study	25
4. Discussion	27
5. Conclusion	28
References	29
Appendices	31
Apendix Tables 1 Multivariate analyses	

Appendix Tables 2 Longitudinal analyses

1 Introduction

Low back pain (LBP) and back disorders are among the most common and costly health problems. Occupational, non-occupational, and individual risk factors play a role in the development, the duration, and the recurrence of LBP. Several systematic reviews have synthesized and discussed the evidence on WBV as an occupational risk factor for back disorders¹⁻⁷. All these reviews conclude that there is moderate to strong epidemiological evidence for a relation between occupational exposure to whole-body vibration (WBV) and LBP. Whether this exposure is only a modest or a substantial risk factor for the onset and recurrence of LBP is still a matter of debate. Recently, also some studies were published in which the relationship between WBV and back disorders was not confirmed⁸⁻¹⁰. Nevertheless, in five European countries (Belgium, Germany, Netherlands, France, and Denmark), LBP and back disorders due to WBV are, when meeting certain criteria, currently recognised as an occupational disease¹¹. High exposures still occur as WBV is a common occupational risk factor, affecting 4% to 8% of the workforce in industrialised countries¹²⁻¹³. Important high risk groups are drivers of off-road vehicles (earth moving, forestry, and agricultural machines), drivers of forklift trucks, lorries, or buses, crane operators, and helicopter pilots. Daily exposure to WBV for 8 hour with an average magnitude above 0.5 ms⁻² rms in the dominant axis may significantly contribute to the occurrence of back disorders. In the recent European Guideline this value has been adopted to distinguishing between possible hazardous and harmless work situations¹⁴. This 'action value' does not take into account differences in magnitude and direction of the vibration spectrum and, in addition, most likely underestimates the risk associated with short-term exposure to high magnitude. Hence, a better insight is needed in clear exposure-response relationships for the association of frequency, duration, magnitude, and direction of the vibration spectrum with back disorders.

This study reports the findings of a prospective cohort study on dose-response relationship for low back pain disorders in WBV-exposed drivers in the Netherlands. The study is conducted as part of a four-year research project entitled "*Risks of Occupational Vibration Injuries* (VIBRISKS)" and was funded by the EU Commission.

1.1 Objectives

The aim of this study was to investigate the prevalence and incidence of LBP outcomes in various groups of professional drivers in the Netherlands. Vibration measurements in a representative sample of the machines and vehicles used by the various driver groups were combined with real time observation of tasks and postures by a validated observation system,

3

Palmtrac®. The association between LBP, WBV exposure, physical load factors, and psychosocial variables was investigated while controlling for potential individual confounders recognised as risk factors for LBP. In order to explore the evidence in the research about which preventive strategies are successful in reducing vibration magnitude in the workplace, a systematic review of the literature was carried out. The results were used to design an experimental intervention programme that is implemented in a sub sample of the study populations.

2 Methods

2.1 Study population

The Dutch study population included at the start 574 male professional drivers employed in 13 different companies in agriculture, manufacturing industries, construction, public utility and transport industry throughout the country. A minimum of one year of professional driving in the current job was established as the basic criterion for the inclusion of drivers in the study population. The most important vehicles that in this cohort of drivers were driven occupationally were: wheeled loaders, excavators and other earth moving equipment, mobile cranes, lorries, lawn mowing machines, asphalt machines, tractors, and small boats.

Informed consent to the study was obtained from employers and employees at each company. At the 1st follow-up survey, 466 drivers were left from the original cohort. The most important

reasons for drop out were the bankruptcy of one of the participating companies and retirement of some of the drivers. The response to the questionnaire study was 318 (56%) at the baseline survey and 266 (57%) at the 1st follow-up survey (Table 1).

Company (N=13)	Baseline	Follow up	Baseline Respons Q	Follow-up Respons Q	Number of measured	Number of measured	
	<u>N</u>	N			vehicles	vehicles	
1.	24	14	11 (46%)	10 (71%)	2	2	
2.	17	16	10 (59%)	8 (50%)	5	5	
3.	46	40	25 (54%)	23 (58%)	6	6	
4.	28	17	13 (46%)	6 (35%)	5	3*	
5.	3	3	2 (67%)	2 (67%)	2	2	
6.	47	xxxx	24 (51%)	xxxx	2	2	
7.	22	18	13 (59%)	11 (61%)	4	4	
8.	5	4	5 (100%)	4 (100%)	2	2	
9.	156	129	57 (37%)	54 (42 %)	4	4	
10.	11	11	11 (100%)	10 (91%)	2	2	
11.	7	6	6 (86%)	4 (67%)	3	3	
12.	15	15	13 (87%)	12 (80%)	4	4	
13.	193	193	128 (66%)	121 (63%)	8	8	
Total	574	466	318 (56%)	266 (57%)	49	47	

Table 1. Study population and response in the companies at baseline and at follow-up

2.2 Questionnaire

Personal, occupational and health histories of the included workers were collected by means of the Dutch version of a standardized questionnaire originally developed within the European project VINET (*Vibration Injury Network*) and further adapted within Work Package 4 of the VIBRISKS project. All questionnaire data have been stored in an Access database. The self-administered questionnaire included 42 questions and required 30-40 minutes to be completed. The questionnaire is divided into five main parts:

- Personal characteristics, habits and sporting activities.
- The current job and its environment with questions about the working activities (lifting, digging, postures etc) and the vehicles which are being driven (type of vehicles, time spend driving etc).
- Previous jobs that may have been held (at least for one year)

- Health: pain, other symptoms and disability in different parts of the body (low back, neck and shoulders) in different time domains (last 7 days and last 12 months)
- Psychosocial questions

Definition of LBP outcomes on the basis of the items in the questionnaire

- **LBP**: pain or discomfort in the low back area (indicated in a figure), with or without radiating pain in one or both legs, lasting one day or longer in the previous seven days (7-day LBP) or the previous twelve months (12-month LBP).
- High pain intensity: LBP in the previous 12 months associated with a pain score ≥ 5 (Von Korff scale).
- LBP disability: last episode of LBP associated with a disability score ≥ 12 (Roland & Morris scale).
- Sciatic pain: radiating pain in one or both legs in the previous 12 months.
- **Acute LBP**: sudden attack of low back pain producing abnormal or locked posture of the back in the previous 12 months.
- **Treated LBP**: low back pain treated with anti-inflammatory drugs or physical therapy in the previous 12 months.
- **Sick leave**: sick leave > 2 days or > 7 days due to LBP in the previous 12 months.

The questionnaire with accompanying letter, information brochure, informed consent and pre paid envelope was sent by mail to each participant. Each questionnaire was coded by a reference number so that privacy was taking into account. Within 18 days reminder letters were send to the participants who did not respond to the first request of completing the questionnaire.

2.3 Measurement and assessment of vibration exposure

Vibration measurements were made on representative samples of industrial machines and vehicles used by the professional drivers (n=49 at the baseline survey and n=47 at the 1st follow-up survey). Vibration was measured at the driver-seat interface during actual operating conditions according to the recommendations of the International Standard ISO 2631-1¹⁵

using a triaxial seat accelerometer (including DIN-microdot Cable WL 0547). The 3-axis recorded signals were amplified, converted to voltage and filtered with type 1700 (Brűel & Kjaer) 3-channel human-vibration front end, with one channel connected to a 2260-I observer modular precision sound analyzer (Brűel & Kjaer). Frequency-weighted root mean square (r.m.s.) accelerations (Ax, Ay and Az) were obtained from one third octave band frequency spectra (1-80 Hz) of the signal recorded in the back-to-chest direction (x-axis), right-to-left direction (y-axis) and vertical direction (z-axis), using the ISO 2631-1 weighting factors. From one-third octave band frequency spectra (1-80 Hz) recorded from x-, y-, and z-directions, frequency-weighted root-mean-square (r.m.s.) accelerations (a_{wx} , a_{wy} , a_{wz}) were obtained by using the weighting factors suggested by ISO 2631-1.

The WBV measurement data were exported and stored in an Excel spreadsheet, using the Noise Explorer type 7815 version 4.7 software. For further analysis, the first two minutes of the total recorded time were deleted, as it was necessary to install both the equipment and the driver properly. In addition, zero values due to measurement artefact in the measurement were deleted and extrapolated, using the average of the values one second before and one second after the zero value, as the WBV signal was logged every second.

The vibration total value (or vector sum) of the weighted r.m.s. accelerations, a_v , was calculated according to the following formula: $a_v = [(1.4a_{wx})^2 + (1.4a_{wy})^2 + a_{wz}^2]^{\frac{1}{2}}$ (ms⁻² r.m.s.).

For each operator, questionnaire data were used to estimate daily exposure to WBV expressed in driving hours, as well as the total duration of exposure to WBV in full-time driving years. Daily vibration exposure was expressed in terms of 8-h energy-equivalent frequency-weighted acceleration magnitude (*A*(8)) according to the EU Directive on mechanical vibration: $A(8) = a_w (T/T_0)^{\frac{1}{2}} (\text{ms}^{-2} \text{ r.m.s.})$. In accordance with a proposal, elaborated in the VIBRISKS project, vibration total value and duration of exposure were used to construct measures of cumulative vibration dose estimated as: $dose = \sum_i [a_i^m t_i]$ where a_i is the vibration total value

of the frequency-weighted accelerations measured on machine *i* driven for time t_i in hours (h/d × d/yr × years). In this way, individual WBV exposure doses were calculated in accordance with the protocol for calculation of dose measures for whole-body vibration (WP4-N14).

2.4 Assessment of physical load, tasks and postures

The physical work demands and the tasks and postures of the drivers included in this study were assessed in two different ways: (1) with the afore-mentioned questionnaire and (2) with the PalmTrac system during observation at the workplace. The PalmTrac system is a direct

observational method, originally developed at the Robens Institute (University of Surrey, UK) and further adapted by the AMC and Health/ERGOcare (Free University Amsterdam) and it allows on-site data recording of tasks, activities and postures on a palmtop (Figure 1).

For each observed driver, data were recorded for approximately four hours. In addition to the questionnaire data, the PalmTrac measurements yield information about the tasks and postures more in detail. Results from ten drivers were used for the comparison between the subjective and objective assessments of physical work demands. All of the questions in the self-administered questionnaire were related to an entire working day (8 hours). To standardize the PalmTrac data also to an entire working day, the exact PalmTrac recording time (in minutes) was calculated as a proportion of eight hours (480 minutes). This proportion was multiplied by the total recorded time for each of the five physical work demands.

Moreover, the simultaneous measurement of tasks and postures and exposure to WBV provides insight into the tasks, activities, and postures that are performed at the time of a minimum or maximum level in the vibration signal and this information was used in the tailoring of an intervention programme. To ensure that the PalmTrac system and the WBV measurement would work simultaneously, the start of the measurements were synchronized.

Figure 1: Different steps involved in the use of the PalmTrac system

2.5 Systematic review of strategies to reduce WBV exposure of drivers

Since an adverse relationship between exposure to WBV and LBP is assumed, implementing effective preventive strategies to reduce exposure to vibration can contribute to a decrease in LBP. Our aim in this part of the study was to explore research evidence to determine which preventive strategies are successful in reducing vibration exposure in the workplace. Therefore, a systematic literature search was performed in the electronic databases PubMed

(biomedical literature), Embase (biomedical and pharmacological literature), ScienceDirect (science, technology, and medical literature), and Osh-Rom (occupational safety and health related literature, including databases RILOSH, MIHDAS, HSELINE, CISDOC, and NIOSHTIC2). Only original articles, dealing with human laboratory or field studies, published between 1985 and 2005 in which the effect on outcome values were identifiable and clearly presented were included in the review. Because our goal was primarily to explore which intervention measures were successful in reducing exposure to WBV, we did not apply further methodological criteria in the selection of articles.

2.6 Data analysis

The statistical analysis of the epidemiological survey was performed using SPSS 12.0.1 for Windows and SAS 9.1. Continuous variables were summarised with the mean or median as measures of central tendency and the standard deviation (SD) or quartiles as a measure of dispersion. The difference between groups was tested with either one-way analysis of variance (ANOVA) or the Kruskal Wallis test. The difference between categorical data cross-tabulated into contingency tables was tested by chi-square statistic. Point prevalence, period prevalence, and cumulative incidence of low back symptoms over the follow-up period were estimated by means of traditional statistical methods for epidemiological data.

Initially, univariate associations were examined to study the effect of various predictors on the occurrence of low back complaints. Then, multivariate random-intercept logistic regression models were used to assess the association between LBP outcomes over time and exposure variables (vibration and physical load) while controlling for the influence of personal and psychosocial factors. Both exposure variables and confounding factors entered in the logistic model as categorical covariates, except for age, which was used as a continuous covariate. The significance of additional variables in the model was tested by the likelihood ratio (LR) chi-square statistic. Independent variables were retained in the model when their probability value was < 0.10. Age was included in each model regardless of the level of statistical significance.

The association between LBP outcomes and several independent variables over time was assessed by logistic regression analysis according to the transition model. Odds ratios and 95% confidence intervals (95% CI) were estimated from the logistic regression coefficients and their standard errors. The magnitude of the likelihood ratio (LR) chi-square statistic was used to assess the "importance", in statistical terms, of the various alternative measures of vibration exposure for the prediction of the outcome.

3 Results

3.1 Vibration exposure

Table 2 shows the mean vibration magnitudes (weighted r.m.s. accelerations) of the most important vehicles that were measured at the baseline survey. Daily driving time in the participating companies varied from 3.0 hours (lawn mowing machines) to 9.8 hours (lorries in road transport). Daily vibration exposure in terms of $A_v(8)$ in the companies ranged from 0.27 (operators of small boats) to 1.20 ms⁻² r.m.s. (drivers of wheeled loaders), (*p*<0.001). Similarly, daily vibration exposure in terms of VDV_{sum} ranged from 8.6 ms^{-1.75} (boats) to 14.9 ms^{-1.75} (drivers of earth moving machines).

Table 2. Mean vibration magnitudes (weighted r.m.s. accelerations) of the dominant vehicle categories measured at the baseline survey.

Category	Number of vehicles	Ax [range]	Ay [range]	Az [range]	Av [range]
vehicle	measured	(m/s²)	(m/s²)	(m/s²)	(m/s²)
Lawn mowing		0,54	0,53	0,52	1.05
machines	9	[0,34-0,83]	[0,24-0,87]	[0,40-0,81]	[0.7-1.3]
		0,73	0,71	0,52	1.25
Shovel	8	[0,59-0,86]	[0,48-0,90]	[0,43-0,69]	[1.01-1.47]
		0,52	0,51	0,34	0.88
Tractor	3	[0,30-0,51]	[0,27-0,41]	[0,10-0,25]	[0.46-1.28]
		0,22	0,21	0,21	0.43
Road Roller	2	[0,07-0,37]	[0,06-0,25]	[0,08-0,34]	[0.14-0.65]
		0,26	0,26	0,39	0.65
Lorry	4	[0,21-0,30]	[0,18-0,34]	[0,26-0,57]	[0.45-0.88]
		0,05	0,04	0,06	0.10
Crane	2	[0,03-0,06]	[0,04-0,04]	[0,03-0,07]	[0.08-0.12]
		0,25	0,25	0,34	0.60
Dumper	5	[0,16-0,29]	[0,18-0,30]	[0,24-0,48]	[0.41-0.77]
		0,40	0,31	0,30	0.66
Excavator	7	[0,19-0,66]	[0,11-0,67]	[0,16-0,52]	[0.36-1.19]
		0,41	0,27	0,56	0.91
Bulldozer	2	[0,33-0,47]	[0,26,-0,27]	[0,44-0,65]	[0.82-1.0]
		0,12	0,19	0,10	0.27
Boat	2	[0,08-0,15]	[0,13-0,24]	[0,08-0,12]	[0.19-0.33]

3.1.1 Relation between vibration exposure and physical tasks

Figure 2 shows an example of the simultaneous assessment of WBV magnitude and observed physical load, tasks and postures.

Figure 2. Example of a result of the simultaneous assessment of physical work demands and WBV measurement for one driver

	accelareation(m/sec2)	 1.Task	Physical work	m/s ²		
	<u>с</u> , с,	 2.Activity 3.Within activity	Demand	Ах	Ау	Az
	134330	 2 – activity	Sitting			
	13/339	 1 - taek	Leveling-off	0.27	0.42	0.15
		 2 – activity	Sitting	0.88	1.07	0.54
	134348	 3 – within	Sitting twisted/	0.96	1.53	0.60
	3	activity	leaning back	0,00	1.00	0,00
	13435/	2 – activity	Sitting	0,22	0,36	0,80
	134406					
	134115					
	134424					
	134433	2 – activity	Sitting (driving without load)	0,67	0,97	0,44
ъ	134442		without load			
lotu	1344:51					
<u>a</u>	134500					
time	134509	 				
v	13/518	 2 – activity	Sitting	0,61	0,53	0,37
		 1 - task	I ransport Sitting	0,29	0,38	0,28
	134627	 z – activity	Situng	0,14	0,24	0,20
	134536	2 – activity	Sitting (Driving	0.35	0.47	0 24
	134545	2 dounty	with load)	0,00	0,77	0,24
	134654					
	134803	 1 - task	Leveling off	0,34	0,18	0,16
	13/612	2 – activity	Sitting twisted/	0,41	0,34	0,21
	134621	 •	ieaning back			
		2 – activity	Sitting (Driving with load)			

3.2 Health outcomes

I

3.2.1 Prevalence and incidence of LBP symptoms

Table 3 reports the most important health outcomes, measured by the questionnaire responses during the baseline and the follow-up survey. These results show reasonable stability over time.

Table 3. Low back pain (LBP) symptoms and other health outcomes at the baseline survey (T0) and the 1st follow-up survey (T1).

	Т0	T1
Average daily exposure duration	7.9 hour (± 2.7)	7.8 hour (± 3.1)
Average years of exposure	17.4 year (± 12.1)	18.4 year (± 13.1)
% with LBP in last 7 days	30.2% (N=96)	35.1% (n=93)
% with LBP in last 12 months	54.7% (N=174)	59.2% (n=157)
VAS score for Low Back	4.3 (median: 4)	4.2 (median: 4)
Roland Morris Disability scale	6.2 (median: 4.5)	5.3 (median: 4)
% with neck pain in last 7 days	18.6% (N=59)	16.7% (N=44)
% with neck pain in last 12 months	33.3% (N=106)	26.8% (N=71)
VAS score for neck pain	4.6 (median: 5)	4.67 (median: 4)
% with shoulder pain in last 7 days	17.3% (N=53)	14.3% (N=38)
% with shoulder pain in last 12 months	28.3% (N=90)	26.4% (N=70)
VAS score for shoulder pain	4.7 (median 4)	4.51 (median 4)

The further section of this report provides primarily information on the findings of the epidemiological surveys of the drivers with complete follow-up (i.e. those who participated in survey 1 and 2, n=230). Table 4 shows the period prevalence (2005-2006) and the cumulative incidence over the follow-up period for LBP in the participating populations. The period prevalence of the various LBP symptoms varied from 36.5% (episodes of acute LBP) to 57.8% (overall LBP in last 12 months). About 6% of the subjects complained about severe disability due to LBP (Roland & Morris disability scale score \geq 12) in the last episode. Sick leave due to LBP in the previous 12 months was reported by 8.7% (> 7 days) of the subjects. Over the follow-up period (2005-2006), the incidence of the various LBP symptoms ranged from 9.1% (acute LBP) to 25.7% (LBP in last 12 months).

Table 4. Period prevalence and one-year incidence of low back pain (LBP) symptoms in the total sample of professional drivers (n=230) that responded to both surveys.

LBP outcome	Prevalence (%)	Incidence (%)
LBP in the previous 7 days	32.6	18.2
LBP in the previous 12 months	57.8	25.7
Episodes of acute LBP in the previous 12 months	36.5	9.1
Episodes of sciatica in the previous 12 months	21.7	10.4
Duration of LBP > 30 days/year in the previous 12 months	12.3	7.8
High back pain intensity in the previous 7 days (VAS score > 5)	8.3	5.6
Disability due to the last episode of LBP (Roland & Morris scale score \ge 12)	5.7	1.7
Visit to a doctor for LBP in the previous 12 months	20.4	7.8
LBP treated with medication or physical therapy in the previous 12 months	21.3	6.5
Sick leave > 2 days due to LBP in the previous 12 months Sick leave > 7 days due to LBP in the previous 12 months	13.0 8.7	5.6 5.2
Sick leave > 7 days due to LBP in the previous 12 months	8.7	5.2

3.2.2 Low back pain and personal characteristics

Univariate analysis showed that in the overall study population severe LBP outcomes (high pain intensity, LBP disability, acute LBP, and sciatica) tended to increase over time with the increase of age (Tables 5a and 5b). An increased occurrence of acute LBP symptoms was found for smoking. Except for sciatica, no clear relationship was shown between the various LBP outcomes and body mass index (BMI). Previous job with high physical load was associated with 7-day LBP and with acute LBP.

Table 5a. Binary logistic regression for the association between low back pain (LBP) symptoms (7-day LBP, 12-month LBP, high pain intensity in the lower back (Von Korff pain scale score > 5) during the previous 12 months, disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP) and various individual factors in the professional drivers (n=230) over one-year follow-up period. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

		7-day LBP	12-month LBP	High pain intensity	LBP disability
Factors		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Age (yr)	Age (yr) ≤35		(-)	(-)	(-)
	36-41	1.11 (0.56-2.20)	1.55 (0.76-3.16)	0.45 (0.08-2.47)	3.34 (0.28-39.69)
	42-48	0.95 (0.52-1.73)	1.20 (0.66-2.17)	1.31 (0.39-4.45)	6.27 (0.68-57.43)
	>48	0.96 (0.58-1.59)	0.68 (0.41-1.11)	2.44 (0.89-6.66)	7.28 (0.91-58.50)
BMI (kg/m ²)	<25	(-)	(-)	(-)	(-)
	25-27	1.17 (0.69-1.98)	1.01 (0.60-1.69)	0.72 (0.26-1.98)	0.50 (0.12-2.02)
	>27	1.20 (0.75-1.91)	0.95 (0.60-1.50)	0.90 (0.37-2.15)	0.93 (0.30-3.81)
Smoking	no smoking	1.0 (-)	(-)	(-)	(-)
ex-smol	ker	1.09 (0.66-1.78)	1.47 (0.91-2.36)	1.48 (0.56-3.90)	0.47 (0.12-1.76)
current sm	noker	1.44 (0.91-2.27)	1.32 (0.85-2.07)	2.16 (0.89-5.24)	1.09 (0.38-3.16)
Married	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.59 (0.82-3.07)	2.11 (1.15-3.88)	1.41 (0.40-4.95)	1.16 (0.13-10.54)
Previous jobs wit	th no	(-)	(-)	(-)	(-)
WBV exposure	yes	1.17 (0.79-1.71)	1.29 (0.86-1.88)	0.83 (0.44-1.59)	0.47 (0.18-1.18)
Previous job with	n no	(-)	(-)	(-)	(-)
heavy physical lo	oad yes	1.85 (1.25-2.74)	1.36 (0.93-2.00)	1.17 (0.61-2.24)	0.73 (0.29-1.86)

Table 5b. Binary logistic regression for the association between low back pain (LBP) symptoms in the previous 12 months (acute LBP, sciatica, treated LBP, sick leave due to LBP) and various individual factors in the professional drivers (n=230) over one-year follow-up period. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

Factors		Acute LBP	Sciatica	Treated LBP	Sick leave (>7 days)
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Age (yr)	≤35	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	36-41	2.00 (1.02-3.92)	2.16 (0.88-5.30)	1.45 (0.56-3.77)	1.29 (0.28-5.97)
	42-48	1.05 (0.58-1.91)	2.31 (1.05-5.09)	2.19 (0.99-4.84)	2.71 (0.81-8.98)
	>48	0.73 (0.44-1.23)	2.46 (1.22-4.96)	2.00 (0.98-4.08)	1.96 (0.60-6.00)
BMI (kg/m ²)	<25	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	25-27	1.13 (0.67-1.91)	0.80 (0.40-1.61)	0.84 (0.44-1.60)	1.15 (0.45-2.98)
	>27	0.93 (0.58-1.49)	2.16 (1.23-3.88)	0.91 (0.52-1.59)	1.05 (0.40-2.50)
Smoking	no smoking	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
ex-sm	oker	2.03 (1.22-3.37)	1.16 (0.66-2.02)	1.45 (0.79-2.64)	2.04 (0.80-5.17)
current s	smoker	1.81 (1.13-2.90)	1.06 (0.62-1.83)	1.40 (0.79-2.50)	1.87 (0.75-4.66)
Married	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.99 (1.02-3.90)	1.70 (0.72-4.02)	1.02 (0.46-2.26)	1.23 (0.34-4.39)
Previous jobs v	vith no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
WBV exposure	e yes	1.36 (0.92-2.01)	0.96 (0.62-1.52)	0.74 (0.46-1.19)	0.87 (0.43-1.74)
Previous job wi	ith no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
heavy physical	load yes	2.03 (1.37-3.01)	1.40 (0.89-2.20)	1.00 (0.62-1.62)	1.95 (0.96-3.97)

3.2.3 LBP and physical work factors

Overall, work-related physical load factors, treated as dichotomous variables, were positively related to many of the LBP outcomes (Tables 6a and 6b). Lifting and awkward postures at work, such as trunk bent at work, trunk twisting while lifting loads or back bent forward, showed significant associations with back pain, pain intensity, disability, treated LBP, and sciatic pain.

3.2.4 LBP and psychosocial variables

Job dissatisfaction in general showed a clear and statistical significant relationship with the various LBP outcomes: the more dissatisfied, the higher the chance of having or developing back pain. When workers were more satisfied about there job opportunities, the chance of

having or developing back pain was significantly lower. For the other psychosocial variables, no clear pattern of association between LBP and psychosocial factors at work was observed in the study population.

Table 6a. Binary logistic regression for the association between low back pain (LBP) symptoms (7-day LBP, 12-month LBP, high pain intensity in the lower back (Von Korff pain scale score > 5) during the previous 12 months, disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP) and various physical load factors in the professional drivers (n=230) over one-year follow-up period. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

		7-day LBP	12-month LBP	High pain intensity	LBP disability
Factors		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Sitting > 3h at work	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.01 (0.68-1.49)	0.99 (0.68-1.45)	0.69 (0.36-1.34)	0.83 (0.32-2.16)
Trunk bent at work	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.41(0.94-2.12)	1.80 (1.18-2.72)	2.29 (1.19-4.41)	1.95 (0.75-5.05)
Trunk twisted at work	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.31 (0.88-1.95)	1.20 (0.81-1.78)	3.05 (1.57-5.93)	2.18 (0.84-5.67)
Lifting at work	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.95 (1.30-2.91)	1.80 (1.20-2.67)	4.37 (2.18-8.80)	2.51 (0.93-6.81)
Lifting & bending	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
at work	yes	1.91 (1.28-2.84)	1.73 (1.18-2.53)	3.97 (1.78-8.85)	2.58 (0.81-8.25)
Lifting & twisting	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
at work	yes	2.15 (1.43-3.22)	1.50 (1.00-2.25)	4.43 (2.22-8.84)	2.72 (1.01-7.34)
Back bent forward or	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
twisted while driving	yes	1.19 (0.80-1.76)	1.02 (0.69-1.49)	0.82 (0.43-1.56)	0.89 (0.34-2.35)

Table 6b. Binary logistic regression for the association between low back pain (LBP) symptoms in the previous 12 months (acute LBP, sciatica, treated LBP, sick leave due to LBP) and various physical load factors in the professional drivers (n=230) over one-year follow-up period. odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

Factors		Acute LBP Sciatica Treated LBP		Treated LBP	Sick leave (> 7 days)
		OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Sitting > 3h at work	no	1.0 (-)	1,0 (-)	1.0 (-)	1.0 (-)
	yes	1.09 (0.74-1.61)	0.84 (0.53-1.33)	1.06 (0.66-1.71)	0.53 (0.25-1.11)
Trunk bent at work	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.82 (1.21-2.75)	1.91 (1.19-3.05)	1.40 (0.86-2.30)	2.00 (0.98-4.07)
Trunk twisted at work	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.48 (0.99-2.21)	1.86 (1.17-2.95)	1.40 (0.86-2.28)	2.21 (1.09-4.50)
Lifting at work	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
	yes	1.99 (1.33-2.96)	2.06 (1.30-3.27)	2.15 (1.33-3.49)	2.60 (1.26-5.32)
Lifting & bending	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
at work	yes	2.14 (1.43-3.20)	2.46 (1.52-3.98)	2.24 (1.36-3.71)	2.66 (1.21-5.86)
Lifting & twisting	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
at work	yes	2.51 (1.67-3.76)	2.43 (1.53-3.86)	2.50 (1.54-4.07)	3.16 (1.54-6.49)
Back bent forward or	no	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
twisted while driving	yes	1.09 (0.73-1.61)	0.81 (0.51-1.26)	1.53 (0.94-2.51)	1.60 (0.75-3.40)

3.2.5 LBP and vibration exposure

To assess a possible exposure-response relationship for LBP outcomes in the professional drivers, measures of vibration exposure, such as A(8), VDV, duration of exposure in years, and vibration doses of the form $\sum [a_i^m t_i]$, were divided into quartiles assuming the lowest quartile as the reference category. Tables 7 and 8 show, as examples (the other results are reported in the appendix to this Annex), the results of the logistic regression analysis for the relation over time between LBP in the last 12 months and daily vibration exposure (Table 7) and between an episode of acute LBP in the previous 12 months and cumulative vibration exposures (Table 7), while adjusting for several covariates such as age, physical load factors, and psychosocial factors. In general, the relation between the various LBP outcomes and the different measures of <u>daily</u> vibration exposure was inconsistent. Only daily driving time was significantly associated with some of the LBP outcomes: acute LBP in the last 12 months, treated LBP,

sciatica, high intensity pain and LBP disability (Roland Morris disability scale \geq 12). Patterns of increased risk for sick leave > 7 days due to LBP in the previous 12 months were found for all the different measures of daily vibration exposure. Regarding the various measures of <u>cumulative</u> vibration doses, more significant relationships and trends with LBP outcomes were seen. Most significant relations between the defined LBP outcomes and the measures of cumulative WBV exposure are found with dose $\sum [t_i]$ and dose $\sum [a_{wsi}^2 t_i]$, however, there are also some significant relations with the other cumulative dose measures. The occurrence of LBP in the previous 12 months was significantly associated only with $\sum [t_i]$. The occurrence of episodes of an episode of acute LBP in the previous 12 months was significantly related to most of the measures of cumulative vibration dose (Table 8). The associations were strongest for $\sum [t_i]$, $\sum [a_{wai}t_i]$, and $\sum [a_{wai}^2 t_i]$.

Table 7. Logistic regression of *low back pain in the previous 12 months* on different measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given

Measures of daily	Qua	osure	LR test		
WBV exposure	Q1	Q2	Q3	Q4	(χ², 3 <i>df</i>)
Daily driving time (h)	5.0	8.0	9.4	11.0	
OR	1.0	0.87	1.23	1.74	4.68
(95% CI)	(-)	0.50 - 1.49	0.73 - 2.08	0.87 - 3.49	(p=0.19)
A _v (8) (ms ⁻² r.m.s.)	0.28	0.45	0.56	0.74	
OR	1.0	0.86	0.73	0.71	1.80
(95% CI)	(-)	0.48 - 1.52	0.41 - 1.30	0.41 - 1.24	(p=0.61)
A _{dom} (8) (ms ⁻² r.m.s.)	0.18	0.32	0.39	0.53	
OR	1.0	0.92	0.72	0.78	1.44
(95% CI)	(-)	0.53 - 1.57	0.40 - 1.31	0.44 - 1.39	(p=0.69)
<i>VDV</i> _v (ms ^{-1.75})	3.20	4.90	6.46	11.83	
OR	1.0	0.49	0.67	0.85	6.92
(95% CI)	(-)	0.28 - 0.86	0.38 - 1.19	0.48 - 1.15	(p=0.07)
<i>VDV</i> _{dom} (ms ^{-1.75})	3.26	4.56	5.81	10.34	
OR	1.0	0.85	0.84	1.16	1.56
(95% CI)	(-)	0.48 - 1.52	0.49 - 1.44	0.68 - 1.98	(p=0.67)

Table 8. Logistic regression within the transition model of *acute low back pain in the previous 12 months* on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative	Quartil	LR test			
WBV exposure	Q1	Q2	Q3	Q4	(χ², 3df)
Exposure duration (yr)	3.2	10.1	21.6	34.8	
OR	1.0	1.32	1.74	1.64	3.16
(95% CI)	(-)	0.73 - 2.40	0.93 - 3.25	0.78 - 3.44	(p=0.37)
\sum [t _i] (h ×10 ³)	4.6	16.7	34.9	60.7	
OR	1.0	1.86	2.14	3.24	9.84
(95% CI)	(-)	1.01 - 3.44	1.10 - 4.15	1.55 - 6.77	(p=0.02)
∑[a _{wsi} t _i](ms⁻²h×10³)	2.8	7.7	16.4	38.2	
OR	1.0	1.56	1.31	2.30	6.11
(95% CI)	(-)	0.85 - 2.87	0.70 - 2.47	1.15 - 4.60	(p=0.11)
$\sum [a_{wsi}^2 t_i] (m^2 s^4 h \times 10^3)$	1.1	4.0	8.9	26.9	
OR	1.0	1.65	1.37	2.03	5.14
(95% CI)	(-)	0.91 - 3.00	0.74 - 2.52	1.06 - 3.88	(p=0.16)
$\sum [a_{wsi}^{4}t_{i}] (m^{4}s^{-8}h \times 10^{3})$	0.29	1.2	3.3	14.1	
OR	1.0	1.05	1.19	1.36	1.17
(95% CI)	(-)	0.58 - 1.88	0.66 - 2.13	0.74 - 2.49	(p=0.76)
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$	1.95	5.60	12.16	27.73	
OR	1.0	1.88	1.43	3.13	12.09
(95% CI)	(-)	1.02 - 3.44	0.75 - 2.72	1.58 - 6.21	(p=0.007)
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$	0.59	2.36	4.94	14.49	
OR	1.0	1.87	1.41	2.35	7.77
(95% CI)	(-)	1.03 - 3.41	0.76 - 2.60	1.23 - 4.49	(p=0.05)
∑[a _{wqi} ⁴ t _i] (m ⁴ s ⁻⁸ h ×10 ³)	0.1	0.36	0.99	4.09	
OR	1.0	0.87	1.31	1.30	2.53
(95% CI)	(-)	0.48 - 1.57	0.73 - 2.33	0.71 - 2.37	(p=0.47)

3.2.6 Low back pain and other physical load factors

After adjustment for potential confounders, the occurrence of LBP in the last 12 months was significantly associated with lifting at work, lifting and bending at work, and lifting and twisting at work (Table 9). When the several physical load variables from the questionnaire were

averaged within each subject to obtain a combined physical load index, the adjusted ORs showed a clear pattern of increasing risk over time for almost all LBP outcomes.

Table 9. Random-intercept logistic regression of 12-month LBP and LBP disability (Roland & Morris disability scale score \geq 12) on work-related physical load variables in the professional drivers over a one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (individual characteristics, vibration exposure, back trauma, previous jobs at risk, and survey).

		12-month LBP		LB	P disability
Variable		OR (95% CI)		OR (95% CI)	
Walking & standing at work	never		1.0 (-)		1.0 (-)
	<1 h/d	1.31	(0.67 - 2.55)	1.17	(0.22 - 6.07)
	1-3 h/d	1.14	(0.68 - 1.91)	1.07	(0.29 - 3.93)
	>3 h/d	1.07	(0.67 - 1.69)	1.71	(0.58 - 5.03)
Trunk bent 20° to 40°	never		1.0 (-)		1.0 (-)
	<1 h/d	1.85	(0.94 - 3.62)	2.53	(0.65 - 9.93)
	1-2 h/d	2.46	(1.31 - 4.62)	2.20	(0.66 - 7.37)
	>2 h/d	1.19	(0.63 - 2.27)	3.30	(0.97 - 11,20)
Trunk bent > 40°	never		1.0 (-)		1.0 (-)
	<0.5 h/d	2.11	(1.17- 3.83)	4.04	(1.33 - 12.23)
	0.5-2 h/d	1.51	(0.85 - 2.68)	1.45	(0.38 - 5.48)
	>2 h/d	1.44	(0.56 - 3.74)	4.25	(0.83 - 21,61)
Trunk twisted & bent 20° to 40°	never		1.0 (-)		1.0 (-)
	<1 h/d	1.26	(0.72 - 2.20)	1.10	(0.23 - 5.29)
	1-2 h/d	1.17	(0.65 - 2.12)	3.30	(1.05 - 10,38)
	>2 h/d	1.22	(0.64 - 2.35)	3.94	(1.23 - 12.59)
Trunk twisted & bent > 40°	never		1.0 (-)		1.0 (-)
	<0.5 h/d	0.99	(0.59 - 1.66)	1.48	(0.39 - 5.67)
	0.5-2 h/d	1.79	(1.01 - 3.22)	3.93	(1.39 - 11.11)
	>2 h/d	1.07	(0.42 - 2.72)	3.65	(0.71- 18.76)
Lifting loads >15 kg	never		1.0 (-)		1.0 (-)
	1-15 min/d	1.97	(1.24- 3.12)	2.92	(0.77 - 11.09)
	15-45 min/d	2.69	(1.50 - 4.84)	2.35	(0.51 -10.86)
	> 45 min/d	1.03	(0.51 - 2.07)	5.79	(1.20 -27.96)
Back bent forward or twisted	never		1.0 (-)		1.0 (-)
while driving	seldom	1.12	(0.72 - 1.74)	1.11	(0.40 - 3.08)
	often	0.93	(0.58 - 1.50)	0.96	(0.31 - 2.98)
Physical load index (grade)	mild		1.0 (-)		1.0 (-)
	moderate	1.07	(0.54 - 2.09)	0.87	(0.10 - 7.74)
	hard	2.09	(1.03 - 4.22)	2.90	(0.36 - 23.36)
	very hard	2.13	(0.83 - 5.48)	0.87	(0.56 - 50.51)

The results of a comparison of the assessment of the physical load, tasks and postures by real time observation (PalmTrac) with the questionnaire data in a sub sample of ten drivers of wheeled loaders revealed that the time spent 'walking + standing' and 'bending' was underestimated by half or more than half of the drivers. However, the time spent on 'lifting' was overestimated by 6 out of 10 of the drivers (Table 10).

Table 10. Comparison between the total time spent on different tasks and postures as recorded by PalmTrac assessment and by answers from the questionnaire (Q) in 10 drivers of wheeled loaders¹⁶.

Task / posture	Underestimation in total time: PalmTrac > Q	Total time PalmTrac = estimated time by Q	Overestimation in total time: PalmTrac < Q
Walking and standing	6	2	2
Trunk bending	5	3	2
Sitting	0	10	0
Sitting (twisted / leaning forward)	3	4	3
Lifting	0	4	6

3.3 Evidence on strategies to reduce WBV exposure of drivers

A total of 1883 articles were retrieved from our literature search of the four databases. We identified 759 duplicates among the databases, leaving 1124 articles. Applying the eligibility inclusion criteria to titles and abstracts eliminated 620 articles. We then applied the selection criteria to the remaining titles with abstracts. This resulted in identifying 46 appropriate articles. The snowball method resulted in eleven extra hits from which the full text was read. Because our goal was primarily to explore which intervention measures were successful in reducing exposure to WBV, we did not apply any further methodological criteria in the selection. We read the full text of the remaining 57 articles. In total, 20 articles were excluded because five of them did not include any WBV measurements (25%), five were not available (25%), four did not show any values for exposure reduction (20%), five were neither field nor laboratory studies (25%), and one was too limited in its methods (5%). Thirty-five articles included 19 laboratory studies (Table 11), 21 field studies (Table 12), and only one

intervention study. Almost all included studies presented one or more factors that had a significant or positive effect on reduction of vibration exposure. While most of the studies concentrated on factors dealing with design considerations (e.g. type of seat or cabin suspension), the results of the review show that significant reduction of exposure can also be achieved by factors concerning 'skills and behaviour' (e.g. speed or driving experience)¹⁷.

Table 11. Different outcome measures for an effective reduction of WBV exposure intensity, WBV exposure duration, or number of intervals of exposure in time, *results from laboratory studies*, * = significant effect, + = positive effect (i.e. exposure reduction), - = no effect, +/- = no consisted result and x = not measured. arms(m/s2) = RMS accelerations in m/s2, VDV = vibration dose value in m/s^{1.75}, SEAT = seat effective transmissibility factor; (ratio between a floor / a seat), STHT = seat to head transmissibility; (ratio between a seat/ a head), Acceleration response = PSD in $(m/s^2)^2/Hz$), fatigue decreased proficiency boundary = FDP in hrs, Exposure limit = according to ISO 2631;1980/2002, MTVV = maximum transient vibration value in m/s²

Factors	Outcome	Evidence for successful	Exposure		
	measure	reduction in exposure	Intensity	Duration	Number of
					intervals
			ļ		in time
Design consider	ations				
Type of seat	a _{rms} (m/s²)	 Hinz et al., 2002 	+*	х	х
	STHT	 Paddan & Griffin, 1998 	+*	x	x
	SEAT	 Hinz et al., 2002 	+*	x	х
		 Huston et al., 1999 	+	х	х
		 Kolich et al., 2005 	+*	х	х
	Internal load (Ns ² /m)	 Hinz et al., 2002 	+	x	x
Seat	SEAT	 Boileau & Rakheja, 1990 	+/-	x	х
suspension		 Burdorf & Swuste, 1993 	+	x	х
		 Hostens & Ramon, 2003 	+*	x	х
		 Wilder et al., 1994 	+	x	x
	a _{ms} (m/s ²)	 Bouazara et al., 2004 	+*	x	x
		 Deprez et al., 2005b 	+*	x	x
		 Sankar & Afonso, 1993 	+*	x	х
	VDV (m/s ^{-1.75})	 Deprez et al., 2005 	+*	x	х
		 Deprez et al., 2005b 	+*	x	х
	Hours driving with	 Patil & Palanichamy, 1998 	х	+	х
	respect to				
	exposure limit (ISO)				
Cabin	a _{rms} (m/s ²)	 Hansson, 1995 	+*	x	х
suspension		 Hansson, 2002 	+*	х	х
		 Patil & Palanichamy, 1985 	+*	х	х
	Hours driving with	 Patil & Palanichamy, 1985 	-	+*	-
	respect to				
	exposure Imit				
Skille and behav	(130)				
Weight of driver	SFAT	 Burdorf & Swuster 1993 	+*	×	×
Weight of all for	02/11	 Huston et al. 1999 	+*	v v	×
Posture of	a_{mr} (m/s ²)	 Hinz et al. 2002 	+*	x	x
driver		 Magnusson et al., 1993 	+	x	x
		 Wilder et al. 1994 	+*	x	x
	SEAT	 Hinz et al., 2002 	+*	x	х
	STHT	 Demec et al., 2002 	+	x	х
		 Zimmerman & Cook, 1997 	+*	x	х
	Inter load (Ns ² /m)	 Hinz et al., 2002 	+*	х	х

Table 12. Different outcome measures for an effective reduction of WBV exposure intensity, WBV exposure duration, or number of intervals of exposure in time, *results from field studies*, * = significant effect, + = positive effect (i.e. exposure reduction), - = no effect, +/- = no consisted result, and x = not measured. arms (m/s2) = RMS accelerations in m/s2, VDV = vibration dose value in m/s^{1.75}, SEAT = seat effective transmissibility factor; (ratio between a floor / a seat), Acceleration response = PSD in (m/s²)²/Hz), fatigue decreased proficiency boundary = FDP in hrs, Exposure limi t= according to ISO 2631; 1980/2002, MTVV = maximum transient vibration value in m/s².

Factors	Outcome measure	Author	Exposure		
			Intensity	Duration	Number of intervals in time
Design considera	ations				
Type of seat	arma (m/s ²)	 Chen et al. 2003 	+*	x	x
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 Johanning et al., 2002 	+	X	X
		 Özkava et al., 1996 	-	x	X
		 Wijaya & Jonsson, 2003 	+	x	х
	SEAT	 Johanning et al., 2002 	-	х	х
	VDV (m/s ^{-1./5})	 Wijaya & Jonsson, 2003 	+	х	х
	MTVV (m/s ²)	 Wijaya & Jonsson, 2003 	+	х	х
Seat suspension	a _{rms} (m/s ²)	 Antonnen & Niskanen, 1994 	+/-	х	х
		 Boileau & Rakheja, 1990 	+/-	х	х
		 Burdorf et al., 1993 	-	х	х
		 Cann et al., 2004 	-	х	х
		 Malchaire et al., 1995 	+*	х	х
		 Nishiyama et al., 1998 	+	х	х
		 Özkaya et al., 1996 	+/-	х	х
		 Özkaya et al., 1997 	+*	х	х
	SEAT	 Boileau & Rakheja, 1990 	+/-	х	х
		 Burdorf et al., 1993 	-	х	х
		 Johanning et al., 2002 	-	х	х
		 Paddan & Griffin, 2002 	+*	х	х
	Exposure limit	 Boileau & Rakheja, 1990 	X	+	х
	DOD ((2)2/(1)	 Nishiyama et al., 1998 	X	+	Х
O . L in	PSD (m/s ⁻) ⁻ /HZ)	 Sankar & Atonso, 1993 	+*	x	X
Cabin	a _{rms} (m/s ⁻)	Lemerle et al., 2002	+*	х	х
suspension	SEAT	 Lemerle et al., 2002 Diatta & Malabaira, 4002 	+*	X	X
cabin	arms (mvs ⁻)	 Piette & Malchaire, 1992 	+*	x	x
Type of vehicle	a _{rms} (m/s ²)	 Cann et al., 2004 	+*	х	х
		 Chen et al., 2003 	+*	х	х
		 Malchaire et al., 1995 	+*	х	х
		 Ozkaya et al., 1997 	+*	х	х
		 Rehn et al., 2005 	+*	х	х
	VDV (m/s	 Rehn et al., 2005 	+*	х	х
	Exposure limit	 Ozkaya et al., 1997 	х	+	х
lype of tyre on vehicke	arms (m/s⁻)	 Malchaire et al., 1995 	-	x	x
Inflation of the	a _{rms} (m/s²)	 Malchaire et al., 1995 	+	х	х
tyres on vehicle	SEAT	 Sherwin et al., 2004 	+*	х	х
	VDV (m/s ^{-1,73})	 Sherwin et al., 2004 	+*	х	х
	Exposure limit	 Sherwin et al., 2004 	+*	х	х
Load of vehicle	a _{rms} (m/s*)	 Malchaire et al., 1995 	+*	х	х
		 Nishiyama et al., 1998 	+	х	х
		 Ozkaya et al., 1994 	-	х	х
		 Piette & Malchaire, 1992 	-	х	х
Vahiala	- ((- ²)	Renn et al., 2005	+*	X	X
maintenance	arms (m/s*)	 Ozkaya et al., 1994 	+	x	x
Skills and behav	ior				
Weight of driver	arms (m/s²)	 Boileau & Rakheja, 1990 	+/-	Х	х
		 Chen et al., 2003 	+*	Х	х
		 Malchaire et al., 1995 	+*	Х	х
	SEAT	 Boileau & Rakheja, 1990 	+/-	Х	х
	FDP	 Boileau & Rakheja, 1990 	Х	+/-	х
Posture of driver	a _{rms} (m/s²)	 Johanning et al., 2002 	+	Х	х
		 EL-Khatib et al., 1998 	+*	х	х

	VDV (m/s ^{-1.75})	 Wijaya & Jonsson, 2003 	+*	х	х
Experience of	a _{rms} (m/s ²)	 Cann et al., 2004 	-	х	х
driver		 Chen et al., 2003 	+*	х	х
		 Özkaya et al., 1994 	+	х	х
		 Rehn et al., 2005 	+*	х	х
Speed	a _{rms} (m/s ²)	 Antonnen & Niskanen, 1994 	+	х	х
		 Chen et al., 2003 	+*	х	х
		 Johanning et al., 2002 	-	х	х
		 Malchaire et al., 1995 	+*	х	х
		 Özkaya et al., 1994 	+*	х	х
		 Piette & Malchaire, 1992 	+	х	х
		 Rehn et al., 2005 	-	х	х
		 Sorainen & Rytkonen, 1999 	+	х	х
	SEAT	 Johanning et al., 2002 	-	х	х
	VDV m/s ^{-1.75}	 Hostens & Ramon, 2003 	+*	х	х
	Time (hrs) to reach	 Hostens & Ramon, 2003 	х	+*	х
	15 VDV m/s				
	FDP	 Sorainen & Rytkonen, 1999 	х	+	х
	MTVV (m/s*)	 Wijaya & Jonsson, 2003 	+	х	х
Track condition	a _{rms} (m/s²)	 Antonnen & Niskanen, 1994 	+	х	х
		 Cann et al., 2004 	+*	х	х
		 Johanning et al., 2002 	+	х	х
		 Malchaire et al., 1995 	+*	х	х
		 Piette & Malchaire, 1992 	+	х	х
		 Rehn et al., 2005 	+*	х	х
	VDV m/s ^{-1.75}	 Hostens & Ramon, 2003 	+*	х	х

3.4 Intervention study

The results of both surveys and the literature review were used to design an intervention study in a sub sample of the study population (Figure 1). The aim of this study is to investigate whether the use of a specific intervention programme is effective in reducing drivers' exposure to WBV in the selected companies. For this, a randomised controlled trial is currently performed in employees exposed to WBV and their employers.

Figure 1 Design of the intervention study

The population is randomized over 2 groups on company level. One group receives a specific intervention programme and the other group "care as usual." The intervention programme will predominantly have the aim to reduce vibration exposure to the employees. Both programmes consist of providing feedback on the vibration exposure values from the actual field measurements and, in addition to this, an information brochure is send to both groups. The difference between the two groups is that in the group which receives an intervention programme, (1) a health surveillance programme on individual basis and (2) an extra informative presentation will be carried out. Outcome and process parameters will be measured by a pre- and post intervention questionnaire and by field exposure measurements within both groups. The follow-up period time between the pre and post measurement will be 6-7 months. The study is currently going-on.

4 Discussion

In accordance with many earlier studies, the results of this prospective follow up study confirm that both the prevalence and the one year incidence of LBP (57.8 resp. 25.7%) in a cohort of drivers of various vehicles is relatively high compared to other occupational groups. Next to the health outcomes, also the WBV exposure data of our study are, in general, well in line with the majority of the comparable studies published in the last decade^{3,5,8,13,18-20}. This gives an indication that still a substantial proportion of the driving workforce may be at risk for developing LBP.

The exposure estimation of a relatively low number of drivers in our study (11% in the baseline survey) exceeds the daily exposure action value A(8) of 0.5 ms⁻² r.m.s of the EU Directive when only the highest r.m.s. value of the dominant axis of vibration ($A_{dom}(8)$) is taken into account. In this study, we have estimated A(8) using either the highest r.m.s. value of the dominant axis of vibration ($A_{dom}(8)$) or as the total (vectorsum) value a_v ($A_v(8)$) as the measure of frequency-weighted acceleration magnitude to be included in the analyses. These two values are significantly different, in particular in the (considerable) number of drivers of excavators, bulldozers, and lorries included in our study. If we take the total (vectorsum) value a_v ($A_v(8)$) into consideration then the number of drivers that would exceed the daily exposure action value A(8) of 0.5 ms⁻² r.m.s of the EU Directive would rise to 66% !

In this study, several physical and postural load factors, as assessed by responses to the questionnaire, were significant predictors of LBP. The reliability of this finding may, however, be disputed as comparison of the questionnaire responses with real time observation showed that the time spent in some unfavourable postures or tasks were underestimated while other were overestimated.

The multivariate data analysis showed that the currently recommended measures of daily vibration exposure, *A*(8) or *VDV*, in general were poorly associated with most of the LBP outcomes, except for sick leave due to LBP. More significant relationships between the LBP outcomes and WBV exposure were seen when using the various cumulative dose measures, in particular for the occurrence of an episode of acute LBP in the previous 12 months. The results of the exposure-response analysis show, however, no consistency over the whole range of LBP outcomes. This may partly be explained by the fact that the drivers in the lowest reference quartile were also exposed to WBV. Besides, a few of the LBP outcomes suffered from low numbers in some categories, leading to wide confidence intervals. Pooling of the data of the different partners in this project, whenever possible, will therefore probably enable a further analysis with more statistical power.

27

5 Conclusion

This prospective cohort study tends to confirm that professional driving in industrial vehicles is associated with an increased risk of work-related LBP. Occupational exposure to WBV and physical loading factors at work are important components of the multifactorial origin of LBP in professional drivers. A clear exposure response pattern could not be derived from the results of this study but the pooling of the data of the different partners may give a more reliable picture. The combination of vibration measurements with real time observations at the workplace and a systematic review on measures of vibration reduction were of help in designing and tailoring a controlled intervention study that is still ongoing in a sub sample of the study population.

References

- Burdorf A, Sorock G. Positive and negative evidence of risk factors for back disorders. Scand J Work Environ Health 1997;23:243–56.
- Bernard BP (editor). 1997 Musculoskeletal disorders and workplace factors. A critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back. Washington: U.S. Department of Health and Human Services (DHHS), National Institute for Occupational Safety and Health, DHHS/NIOSH, 1997.
- Bovenzi M, Hulshof CT. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain (1986–1997). Int Arch Occup Environ Health 1999;72:351–65.
- Hoogendoorn WE, van Poppel MNM, Bongers PM, Koes BW, Bouter LM. Physical load during work and leisure time as risk factors for back pain. *Scand J Work Environ Health* 1999;25:387-403.
- 5. Lings S, Leboeuf-Yde C. Whole-body vibration and low back pain: a systematic, critical review of the epidemiological literature 1992–1999. *Int Arch Occup Environ Health* 2000;**73**:290–7.
- 6. Waddell G, Burton AK. Occupational health guidelines for the management of low back pain at work; evidence review. London: Faculty of Occupational Medicine, 2000.
- 7. Lötters F, Burdorf A, Kuiper J, Miedema H. Model for the work-relatedness of low-back pain. *Scand J Work Environ Health* 2003;**29**:431–440.
- 8. Kumar A, Varghese M, Mohan D, Mahajan P, Gulati P, Kale S. Effect of whole-body vibration on the low back. A study of tractor-driving farmers in north India. *Spine* 1999;**24**:2506-15.
- 9. Battie MC, Videman T, Gibbons LE, Manninen H, Gill K, Pope M, Kaprio J. Occupational driving and lumbar disc degeneration: a case-control study. *Lancet* 2002;**360**:1369-74.
- Rehn B, Bergdahl IA, Ahlgren C, From C, Järvholm B, Lundström R, Nilsson T. Musculoskeletal symptoms among drivers of all-terrain vehicles. *Journal of Sound and Vibration* 2002;**253**:21-29.
- 11. Hulshof CTJ, van der Laan G, Braam ITJ, Verbeek JHAM. The fate of Mrs Robinson: Criteria for recognition of whole-body vibration injury as an occupational disease. *Journal of*

Sound and Vibration 2002;253:185-94.

- Johanning E, Hulshof CTJ, Christ E. Whole-body and segmental vibration. In: Erdil M, Dickerson OB (eds); *Cumulative trauma disorders: prevention, evaluation, and treatment*. Van Nostrand Reinhold, New York 1997:221-250.
- Palmer KT, Griffin MJ, Bendall H. Prevalence and pattern of occupational exposure to whole body vibration in Great Britain: findings from a national survey. *Occup Environ Med* 2000;**57**:229–36.
- 14. Directive 2002/44/EC of the European parliament and of the Council of 25 June 2002 *on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (vibration)* (sixteenth individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC).
- 15. International Organization for Standardization ISO 2631-1, Mechanical vibration and shock; evaluation of human exposure to whole-body vibration in the working environment; part 1 general requirements. Geneva, 1997.
- 16. Tiemessen IJ, Hulshof CTJ, Frings-Dresen MHW. Direct observational assessment of physical work demands in whole body vibration measurements yield important information for preventive activities. (submitted)
- 17. Tiemessen IJ, Hulshof CTJ, Frings-Dresen MHW. Strategies to reduce whole body vibration exposure on drivers: a systematic review. *Int J Ind Ergon* 2007 (in press).
- Schwarze S, Notbohm G, Dupuis H, Hartung E. Dose-response relationships between whole-body vibration and lumbar disk disease - a field study on 388 drivers of different vehicles. *Journal of Sound and Vibration* 1998;**215**:613-628.
- 19. Burdorf A, Hulshof CTJ. Modelling the effects of exposure to whole-body vibration on lowback pain and its long-term consequences for sickness absence and associated work disability. *Journal of Sound and Vibration* 2006;**298**:480-91.
- 20. Bovenzi M, Rui F, Negro C et al. An epidemiological study of low back pain in professional drivers. *Journal of Sound and Vibration* 2006;**298**:514-39.

Appendix: Tables of the multivariate and longitudinal analyses

Appendix Tables 1: multivariate analyses

Appendix Tables 2: longitudinal analyses

Tables 1. Multivariate analyses

Table 1. Distribution of the study populations investigated at both cross-sectional and follow-up survey (n=407) by industry and machinery in the Netherlands.

Company	Number of drivers	Number of drivers	Machine/vehicle
	то	T1	
1	24	14	Lawn mowing machine
2	17	16	Mobile Crane Wheel loader Roadroller
3	46	40	Tractor Lawn mowing machines
4	28	17	Dumper Excavator Road roller
5	3	3	Wheel loader
6	47	-	Lorry
7	22	18	Wheel loader Dumper Bull dozer Excavator
8	5	4	Mobile crane
9	156	129	Lorry
10	11	11	Boat
11	7	6	Excavator Wheel loader
12	15	15	Wheel loader Dumper Bulldozer
13	193	193	Tractor Lawn mowing machines Excavator Dumper Road roller Asphalt machine

Table 2. Frequency-weighted root-mean-square (r.m.s.) acceleration magnitude (a_w) of vibration measured in the *x*-, *y*-, and *z*-directions on the seat of industrial machines and vehicles. The vibration total value of frequency-weighted r.m.s. accelerations (a_v) is calculated according to International Standard ISO 2631-1 (1997). Data are given as means (standard deviations).

	Compony	Nhumhanaf	Frequency-weighted acceleration magnitude			
Machine/venicle	Company	vehicles measured	a _{wx} (ms ⁻² r.m.s.)	a _{wy} (ms ⁻² r.m.s.)	<i>a</i> _{wz} (ms ⁻² r.m.s.)	<i>a</i> v (ms ⁻² r.m.s.)
Wheel loader	2	3	0.60 (0.14)	0.51 (0.10)	0.42 (0.08)	0.99 (0.20)
Wheel loader	5	2	0.45 (0.04)	0.32 (0.01)	0.29 (0.06)	0.69 (0.07)
Wheel loader	7	1	0.82 (-)	0.98 (-)	0.45 (-)	1.40 (-)
Wheel loader	11	1	0.70 (-)	0.73 (-)	0.56 (-)	1.28 (-)
Wheel loader	12	2	0.91 (0.27)	0.83 (0.16)	0.68 (0.13)	1.55(0.36)
Excavator	4	1	0.15 (-)	0.10 (-)	0.08 (-)	0.21 (-)
Excavator	7	1	0.27 (-)	0.19 (-)	0.31 (-)	0.86 (-)
Excavator	11	2	0.25 (0.03)	0.14 (0.02)	0.19 (0.06)	0.38 (0.17)
Excavator	13	1	0.28 (-)	0.13 (-)	0.17 (-)	0.39 (-)
Lawn mowing machine	1	2	0.49 (0.12)	0.59 (0.18)	0.48 (0.10)	1.01 (0.25)
Lawn mowing machine	3	5	0.57 (0.16)	0.53 (0.21)	0.49 (0.13)	1.05 (0.29)
Lawn mowing machine	13	2	0.57 (0.08)	0.6 (0.01)	0.49 (0.13)	1.08 (0.15)
Mobile crane	2	1	0.17 (-)	0.12 (-)	0.15 (-)	0.29 (-)
Mobile crane	8	2	0.11 (0.1)	0.12 (0.13)	0.22 (0.23)	0.34 (0.37)
Road roller	2	1	0.15 (-)	0.13 (-)	0.16 (-)	0.30 (-)
Road roller	13	1	0.14 (-)	0.17 (-)	0.15 (-)	0.31 (-)
Tractor	3	1	0.53 (-)	0.59 (-)	0.57 (-)	1.13 (-)
Tractor	13	2	0.29 (0.07)	0.34 (-)	0.16 (0.04)	0.50 (0.06)

Dumper	4	2	0.29 (0.10)	0.31 (0.05)	0.45 (0.21)	0.76 (0.29)
Dumper	7	1	0.44 (-)	0.33 (-)	0.54 (-)	0.94 (-)
Dumper	12	1	0.24 (-)	0.34 (-)	0.27 (-)	0.56 (-)
Dumper	13	1	0.17 (-)	0.16 (-)	0.39 (-)	0.59 (-)
Lorry	9	4	0.23 (0.04)	0.23 (0.01)	0.35 (0.05)	0.58 (0.06)
Boat	10	2	0.09 (0.05)	0.21 (0.17)	0.09 (0.07)	0.27 (0.18)
Bulldozer	7	1	0.38 (-)	0.31 (-)	0.50 (-)	0.86 (-)
Bulldozer	12	1	0.54 (-)	0.30 (-)	0.73 (-)	1.20 (-)
Asphalt machine	13	1	0.08 (-)	0.09 (-)	0.06 (-)	0.15 (-)

Table 3. Characteristics of the study populations at the cross-sectional survey. Data are given as means (standard deviations) for age and anthropometric characteristics, or as numbers (%) for smoking, drinking, marital status, education and physical activity

	Driver groups in the different companies						
	1 (n=11)	2 (n=10)	3 (n=25)	4 (n=13)	5 (n=2)	6 (n=24)	
Age (yr)	43.8 (12.3)	43.0 (13.0)	42.3 (11.4)	52.3 (10.3)	36.2 (4.1)	42.6 (10.2)	
Height (cm)	182 (7.3)	178 (8.3)	184 (7.7)	176 (7.8)	186 (5.7)	182 (6.4)	
Weight (kg)	90.3 (19.3)	89.6 (11.6)	84.8 (15.2)	85.4 (14.0)	98.5 (9.2)	87.8 (13.8)	
Body mass index (kg/m ²)	27.3 (5.1)	28.4 (3.5)	25.1 (3.7)	27.5 (4.3)	28.4 (0.9)	26.5 (4.5)	
Smoking (n): never	6 (54.5)	3 (30)	9 (36.0)	4 (30.8)	2 (100.0)	5 (20.8)	
ex-smokers	2 (18.2)	6 (60)	7 (28.0)	5 (38.5)	-	9 (37.5)	
current smokers	3 (27.3)	1 (10)	9 (36.0)	4 (30.8)	-	10 (41.7)	
Drinking (n)	8 (72.7)	6 (60)	24 (96.0)	10 (76.9)	2 (100.0)	22 (91.7)	
Married (n)	10 (90.9)	9 (90)	21 (84.0)	12 (92.3)	2 (100.0)	22 (91.7)	
Physical activity (n): never	2 (18.2)	1(10)	3 (12.0)	3 (23.1)	-	4 (16.7)	
1-2 per week	-	1 (10)	3 (12.0)	1 (7.7)	2 (100.0)	6 (25.0)	
3-4 per week	1 (9.1)	3 (30)	6 (24.0)	4 (30.8)	-	3 (12.5)	
> 4 per week	8 (72.7)	5 (50)	13 (54.0)	5 (38.5)	-	11 (45.8)	
	7	8	9	10	11	12	13
--------------------------------------	-------------	-------------	-------------	-------------	-------------	-------------	--------------------------
	(n=13)	(n=5)	(n=57)	(n=11)	(n=6)	(n=13)	(n=128)
Age (yr)	45.2 (11.1)	37.6 (11.9)	42.9 (10.5)	52.3 (5.9)	40.8 (17.0)	45.7 (10.6)	45.0 (9.9) ^b
Height (cm)	180 (4.0)	183 (4.3)	184 (8.5)	178 (8.0)	182 (5.4)	183 (7.6)	181 (6.8) ^b
Weight (kg)	89.8 (7.2)	87.8 (2.4)	87.4 (11.4)	84.5 (13.7)	90.7 (14.0)	87.8 (11.8)	87.9 (12.2) ^a
Body mass index (kg/m ²)	27.9 (2.6)	26.4 (1.6)	26.0 (3.4)	26.7 (3.6)	27.4 (4.2)	26.2 (2.5)	26.8 (3.4) ^b
Smoking (n): never	7 (53.8)	1 (20.0)	18 (3.6)	1 (9.1)	2 (33.3)	2 (15.4)	41 (32.0) ^d
ex-smokers	3 (23.1)	2 (40.0)	13 (22.8)	5 (45.4)	1 (16.7)	6 (46.2)	38 (29.7)
current smokers	3 (23.1)	2 (40.0)	26 (45.6)	5 (45.4)	3 (50.0)	5 (38.2)	49 (38.3) ^d
Drinking (n)	10 (76.9)	3 (60.0)	49 (86.3)	11 (100.0)	3 (50.0)	13 (100.0)	102 (79.7) ^d
Married (n)	11 (84.6)	5 (100.0)	49 (86.3)	9 (81.8)	5 (83.3)	13 (100.0)	113 (88.3) ^d
Physical activity (n): never	4 (30.8)	2 (20.0)	13 (22.8)	1 (9.1)	3 (50.0)	3 (23.1)	28 (21.9)
1-2 per week	6 (46.2)	1 (10.0)	5 (8.8)	1 (9.1)	-	7 (53.8)	40 (31.3)
3-4 per week	2 (15.4)	2 (20.0)	9 (15.8)	3 (27.3)	-	2 (15.4)	20 (15.6)
> 4 per week	1 (7.7)	5 (50.0)	30 (52.6)	6 (54.5)	3 (50.0)	1 (7.7)	40 (31.3)

F test (one-way ANOVA): ^a*p*<0.05; ^b*p*<0.01 Chi-square test: ^c*p*<0.05; ^d*p*<0.01 Table 4a. Measures of daily exposure to whole-body vibration (WBV) in the professional drivers at the cross-sectional survey (see text for definitions of WBV exposure). Data are given as means (standard deviations) or *medians (quartiles)*. Previous jobs with WBV exposure are given as numbers (%).

	Driver groups in t	Driver groups in the different companies									
Measures of daily											
vibration exposure	1	2	3	4	5	6					
	(n=11)	(n=10)	(n=25)	(n=13)	(n=2)	(n=24)					
	3.3 (1.5)	6.2 (2.6)	6.9 (3.6)	7.6 (3.1)	9.5 (0.7)	9.5 (1.9)					
Daily driving time (n)	3.0 (2.0-4.0)	7.6 (3.5-8.0)	8.0 (3.3-9.1)	8.0 (6.1-9.8)	9.5 (9.0-10.0)	10 (8.0-10.8)					
(0) (m a^{-2} m m a^{-3})	0.42 (0.17)	0.66 (0.34)	0.82 (0.38)	0.54 (0.20)	1.20 (0.07)	0.57 (0.05)					
$A_{\rm v}(8)$ (ms ⁻ r.m.s.)	0.35 (0.28-0.61)	0.67 (0.37-0.82)	0.68 (0.55-1.14)	0.58 (0.46-0.68)	1.20 (1.15-1.25)	0.58 (0.58-0.58)					
(0) (m e^{-2} m m e^{-2}	0.3 (0.1)	0.5 (0.2)	0.6 (0.2)	0.4 (0.2)	0.8 (0.1)	0.4 (0.0)					
$A_{\rm dom}(8)$ (ms f.m.s.)	0.2 (0.2- 0.4)	0.5 (0.3-0.6)	0.5 (0.4- 0.8)	0.4 (0.3- 0.5)	0.8 (0.7- 0.8)	0.4 (0.4- 0.4)					
$1/D ((mo^{-1.75}))$	6.0 (3.0)	7.1 (2.8)	11.4 (4.7)	7.3 (3.8)	12.9 (3.1)	6.1 (1.2)					
VDV_{v} (ms γ)	4.5 (3.7-9.2)	6.5 (5.2-8.3)	10.2 (8.3-14.6)	6.5 (5.2-9.8)	12.9 (10.8-15.1)	5.6 (5.6-5.6)					
1/D1 (mo ^{-1.75})	5.1 (2.6)	6.4 (2.5)	9.9 (3.9)	6.6 (3.5)	10.7 (2.8)	5.5 (1.2)					
VDV_{dom} (ms)	4.0 (3.2-7.3)	5.8 (4.7-7.4)	9.7 (7.4-12.4)	5.8 (4.7-8.6)	10.7 (8.8-12.7)	5.1 (5.1-5.1)					
Previous jobs with	10 (90.9)	6 (60.0)	22 (88.0)	10 (76.9)	1 (50.0)	20 (83.3)					
WBV exposure (n)											

Measures of daily	Driver groups						
vibration exposure	7	8	9	10	11	12	13
	(n=13)	(n=5)	(n=57)	(n=11)	(n=6)	(n=13)	(n=128)
Daily driving time (b)	8.4 (2.8)	5.6 (3.5)	8.2 (2.9)	6.5 (1.9)	7.5 (0.8)	9.1 (1.5)	8.4 (1.8)
	9.0 (8.0- 10.0)	4.2 (2.6-9.2)	8.6 (6.1-10.4)	7.2 (4.8-8.0)	8.0 (6.7-8.0)	8.4 (8.0-10.0)	8.2 (8.0-9.6) ^a
			0.54 (0.4)		0.04 (0.00)	0.70 (0.00)	0.5 (0.0)
A(8) (ms ⁻² r m s)	0.64 (0.24)	0.30 (0.23)	0.54 (0.1)	0.3 (0.1)	0.84 (0.39)	0.78 (0.32)	0.5 (0.3)
Av(0) (113 1.11.3.)	0.58 (0.53-	0.34 (0.07-	0.58 (0.51-	0.28 (0.27-	0.63 (0.56-1.32)	0.68 (0.56-	0.5 (0.4-
	0.68)	0.51)	0.58)	0.30)		0.98)	<i>0.1</i>) °
A (O) (as a ⁻² as as a)	0.5 (0.2)	0.2 (0.2)	0.4 (0.1)	0,2 (0,0)	0.6 (0.2)	0.5 (0.2)	0.4 (0.2)
A _{dom} (8) (ms ⁻ r.m.s.)	0.4 (0.4- 0.5)	0.2 (0.0- 0.3)	0.4 (0.3- 0.4)	0.2 (0.2-0.2)	0.5(0.4-0.9)	0.5 (0.4- 0.7)	0.7 (0.6-
							1.0) ^a
1 (D) ((a a c 1 75)	7.9 (2.6)	4.8 (4.1)	6.4 (2.2)	3.9 (1.5)	8.2 (3.6)	8.2 (3.1)	6.2 (3.2)
VDV_{v} (ms ······)	8.8 (5.8-9.4)	4.6 (0.8-8.9)	5.6 (5.5-6.0)	2.8 (2.8-4.9)	6.2 (5.5-12.6)	7.6 (5.8-10.5)	7.6 (5.8-
							10.5) ^a
-175	7.1 (2.4)	4.4 (3.8)	5.8 (2.1)	3.6 (1.3)	7.1 (2.7)	7.1 (2.5)	5.4 (2.8)
VDV_{dom} (ms	7.8 (5.2-8.3)	4.1(0.7-8.2)	5.1 (4.9-5.4)	2.7 (2.6-4.5)	5.6 (5.1-10.4)	6.7 (5.1-9.3)	6.7 (5.1-9.3)
							а
Previous jobs with	9 (69.2)	3 (60.0)	49 (86.0)	5 (45.5)	3 (50.0)	9 (69.2)	71 (61.7) ^b
WBV exposure (n)							

Kruskall-Wallis one-way analysis of variance: ${}^{a}p$ <0.001; chi-square test: ${}^{b}p$ <0.01

Table 4b. Measures of cumulative (lifetime) exposure to whole-body vibration (WBV) in the professional drivers at the crosssectional survey (see text for definitions of cumulative WBV exposure). Data are given as means (standard deviations) or *medians (quartiles)*.

Measures of cumulative	Driver groups in	Driver groups in the different companies								
WBV exposure	1 (n=11)	2 (n=10)	3 (n=25)	4 (n=13)	5 (n=2)	6 (n=24)				
Duration of exposure (yr)	12,0 (10.5)	20,5 (12.8)	13,0 (11.5)	28,7 (11.5)	15,7 (7.1)	10,1 (10.8)				
	10.9 (2.1-20.4)	19.4 (10.4-32.6)	7.4 (4.0- 21.0)	33.0 (17.7-37.5)	15.7 (10.7-20.7)	5.7 (1.8- 15.6)				
$\sum[t_i]$ (h ×10 ³)	6,6 (5.8) <i>4.1 (1.6- 11.2)</i>	25,7 (20.6) 20.8 (5.0- 43.4)	20,2 (23.1) 10.2 (4.3- 35.8)	43,9 (28.2) 50.0 (18.0- 64.5)	29,3 (11.2) 29.3 (21.4- 37.3)	20,0 (22.3) 11.0 (3.4- 35.9)				
$\sum [a_{\rm wsi}t_{\rm i}] (\rm ms^{-2}h \times 10^3)$	4,6 (4.7) 2.3 (1.5- 6.8)	20,6 (17.3) 19.7 (3.3- 35.3)	16,2 (17.2) 7.6 <i>(4.1-27.9)</i>	25,6 (17.7) 25.6 (10.4- 37.0)	35,2 (14.9) 35.2 (24.6- 45.7)	11,6 (12.9) 6. <i>1 (</i> 2.0- 20.8)				
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$	3,6 (5.1)	18,2 (19.1)	15,6 (20.2)	16,1 (11.9)	43,3 (21.2)	6,7 (7.5)				
	1.3 (1.2- 4.6)	14.3 (2.2- 28.6)	7.1 (4.3-22.1)	<i>17.3 (5.2- 25.6)</i>	<i>43.3 (28.3- 58.3)</i>	3.4 (1.1- 12.0)				
$\sum [a_{wsi}^{4}t_{i}] (m^{4}s^{-8}h \times 10^{3})$	3,0 (7.2)	18,7 (30.8)	23,2 (46.8)	6,8 (5.5)	68,0 (43.2)	2,2 (2.5)				
	0.5 (0.4- 2.1)	6.6 (1.0- 22.8)	9.5 (2.5- 24.7)	8.1 (1.7-10.9)	68.0 (37.5- 98.6)	1.2 (0.4- 4.0)				
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$	3.0 (3.3)	15.1 (12.6)	12.0 (12.8)	19.1 (13.1)	25.5 (11.0)	8.6 (9.7)				
	1.7 (1.0-4.9)	14.7 (2.5-25.8)	5.6 (3.0-2.3)	18.9 (7.7-28.1)	25.5 (17.7-33.3)	4.5 (1.5-15.5)				
$\sum [a_{wq^{2}i}t_{i}] (m^{2}s^{-4}h \times 10^{3})$	1.8 (2.8)	9.8 (10.1)	8.5 (12.8)	8.9 (6.6)	22.7 (11.4)	3.7 (4.2)				
	0.7 (0.6-2.2)	7.6 <i>(1.2-15.6)</i>	3.9 (2.4-12.5)	9.4 (2.9-11.8)	22.7 (14.6-30.8)	1.9 (0.6-6.7)				
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$	0.9 (2.1)	5.5 (8.8)	6.7 (13.4)	2.1 (1.8)	18.7 (12.4)	0.7 (0.8)				
	0.1 (0.1-0.4)	1.9 (0.3-7.0)	2.8 (0.8-7.1)	2.3 <i>(0.5-3.3)</i>	18.7 (10.0-27.5)	0.4 (0.1-1.3)				

	Driver groups in	Driver groups in the different companies									
Measures of cumulative											
WBV exposure	7	8	9	10	11	12	13				
	(n=13)	(n=5)	(n=57)	(n=11)	(n=6)	(n=13)	(n=128)				
	15,3 (10.3)	13,3 (13.3)	12,6 (11.2)	29,1(8,8)	15,7 (13.9)	20,4 (11.2)	19,8 (11.7)				
Duration of exposure (yr)	11.0 (9.3-21.6)	7.9 (4.5- 24.9)	8.1 (3.8- 17.3)	31.7 (24.0-35.1)	10.0 (4.7- 29.4)	17.5 (10.6- 30.7)	17.8 (9.2- 30.4) ^a				
$\Sigma(1) = 10^{3}$	24,4 (17.1)	15,2 (13.7)	21,9 (24.6)	36,9 (13,8)	23,7 (21.9)	37,5 (22.6)	33.6 (20.7)				
$\sum [t_i] (n \times 10^\circ)$	19.9 (14.2- 27.0)	12.6 (2.3- 29.4)	11.9 (4.7- 27.2)	42.0 (23.0-47.6)	14.3 (7.5- 43.1)	34.9 (18.8- 54.0)	33.0 (15.4-49.8) ^a				
$\sum [a_{1} + 1] (ma^{-2}h_{1} + 10^{3})$	16,2 (11.3)	7,5 (9.1)	13,1 (15.6)	11,7 (3.7)	26,7 (32.7)	27,5 (15.5)	18.5 (15.1)				
$\sum [a_{wsi}t_i]$ (IIIS II × 10)	12.8 (8.1-23.2)	1.3 (0.6-17.4)	6.9 (2.8- 16.4)	12.7 (10.0-	8.3 (4.6- 60.5)	24.6 (16.9- 41.3)	15.0 (6.4-29.2) [°]				
				14.1))							
$\Sigma [a_{m}^{2}t] (m^{2}s^{-4}h \times 10^{3})$	11,7(10.6)	4,4 (5.5)	8,0 (10.2)	4,2(2,1)	33,3 (46.6)	22,6 (16.4)	11.6(17.1)				
	7.5 (4.6- 10.5)	0.9 (0.1-10.4)	4.1 (1.7-9.7)	3.7 (3.0- 5.3)	4.9 (3.0- 65.1)	19.2 (9.0- 34.0)	0.4 (2.2-14.2)				
	0.0 (10.3)	16(21)	3 2 (5 2)	0.8 (0.0)	50.0 (80.4)	24.3 (40.0)	97(291)				
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$	28(21-63)	0.4(0.0-3.9)	1 6 (0 6- 3 4)	0.3(0.3-1.2)	1 8 (1 3- 169 4)	88(29-254)	$16(0.5-6.3)^{a}$				
	2.0 (2.7 0.0)	0.7 (0.0 0.0)	1.0 (0.0 0.1)	0.0 (0.0 1.2)		0.0 (2.0 20.1)	1.0 (0.0 0.0)				
	12.0 (8.4)	5.6 (6.8)	9.9 (11.8)	8.9 (2.7)	19.5 (23.7)	19.9 (11.7)	13.0 (11.3)				
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$	9.4 (6.1-17.3)	1.0 (0.5-13.0)	5.1 (2.1-12.3)	9.7 (7.6-10.8)	6.3 (3.4-43.6)	17.8 (10.2-30.3)	17.8 (10.2-30.3) ^a				
		. ,		. , ,							
	6.4 (6.0)	2.5 (3.1)	4.5 (5.9)	2.3 (1.1)	17.5 (24.3)	12.1 (9.0)	6.3 (9.0)				
$\sum [a_{wq}^{2} t_{i}] (m^{2} s^{4} h \times 10^{3})$	4.0 (2.5-8.9)	0.5 (0.0-5.9)	2.4 (1.0-5.5)	2.1 (1.7-2.9)	2.8 (1.6-44.2)	10.3 (4.5-18.9)	10.3 (4.5-18.9) ^a				
	2.8 (6.4)	0.5 (0.7)	1.1 (1.8)	0.2 (0.2)	16.1 (24.4)	7.0 (11.8)	2.5 (7.8)				
_ ∑[<i>a</i> _{wqi} ⁻ <i>t</i> _i] (m⁻s ˘h ×10˘)	0.9 (0.6-1.8)	0.1 (0.0-1.3)	0.5 (0.2-1.1)	0.1 (0.1-0.3)	0.6 (0.4-45.6)	2.5 (0.8-7.4)	2.5 (0.8-7.4) ^a				

Table 5. Prevalence and one-year incidence of low back pain (LBP) symptoms in the total sample of professional drivers (n=230).

Outcome	Prevalence (%)	Incidence (%)
LBP in the previous 7 days	32.6	18.2 (n=42)
LBP in the previous 12 months	57.8	25.7 (n=59)
Episodes of acute LBP in the previous 12 months	36.5	9.1 (n=21)
Episodes of sciatica in the previous 12 months	21.7	10.4 (n=24)
Duration of LBP > 30 d/yr in the previous 12 months	12.3	7.8 (n=18)
High pain intensity in the lower back in the previous 7 days (Von Korf pain scale score > 5)	8.3	5.6 (n=13)
Disability due to the last episode of LBP (Roland & Morris disability scale score \geq 12)	5.7	1.7 (n=4)
Visit to a doctor for LBP in the previous 12 months	20.4	7.8 (n=18)
LBP treated with medication and/or physical therapy In the previous 12 months	21.3	6.5 (n=15)
Sick leave > 2 days due to LBP in the previous 12 months Sick leave > 7 days due to LBP in the previous 12 months	13.0 8.7	5.6 (n=13) 5.2 (n=12)
Back trauma	8.3	3.1 (n=10)

Table 6a. Binary logistic regression for the association between low back pain (LBP) symptoms (7-day LBP, 12-month LBP, high pain intensity in the lower back (Von Korff pain scale score > 5) during the previous 12 months, disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP) and various individual and work-related risk factors in the professional drivers (n=230) over one-year follow-up period. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

Factors		7-day l	_BP	12-mor	nth LBP	High p	ain intensity	LBP di	sability
		OR (95	5% CI)	OR (95	5% CI)	OR (95	5% CI)	OR (95	5% CI)
Age (yr)	≤35	1.0 (-)	,	1.0 (-)	,	1.0 (-)	,	1.0 (-)	,
	36-41	1,105	,555	1,548	,758	,450	,082	3,344	,282
			2,198		3,161		2,467		39,688
	42-48	,950	,520	1,199	,661	1,313	,387	6,265	,683
			1,734		2,177		4,452		57,432
	>48	,958	,576	,678	,413	2,437	,892	7,276	,905
			1,593		1,112	1.0.()	6,659		58,503
BIMI (kg/m ⁻)	<25	1.0 (-)	000	1.0 (-)	004	1.0 (-)	004	1.0 (-)	405
	25-27	1,172	,692	1,010	,604	,720	,∠01 1.002	,504	,125
	>27	1 201	1,904 752	050	1,007 603	807	1,900	027	2,023
	-21	1,201	,752	,900	,003 1 496	,097	,373 2 153	,921	,303 2 834
Smoking no sr	nokina	10(-)	1,017	10(-)	1,400	10(-)	2,100	10(-)	2,004
ex-s	smoker	1.088	.662	1.465	.909	1.477	.559	.470	.125
		1,000	1.786	.,	2.363	.,	3.902	,	1.763
current s	smoker	1,436	,910	1,321	,845	2,156	,888	1,089	,376
			2,265		2,065		5,237		3,156
Drinking (unit/week)	0	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
	1-3	1,188	,647	1,210	,675	,940	,279	,734	,160
			2,182		2,169		3,165		3,370
	4-6	,885	,474	,816	,457	1,612	,487	1,083	,248
		4 400	1,652	4.05.4	1,455	4.044	5,333	0.40	4,728
	>6	1,496	,852	1,354	,785	1,344	,454	,840	,221
Marriad		10()	2,626	10()	2,335	10()	3,974	10()	3,193
Mameu		1.0 (-)	821	1.0(-)	1 1/16	1.0 (-)	402	1.0 (-)	128
	yes	1,505	3 074	2,110	3 882	1,410	, 4 952	1,101	10 541
Previous jobs with	no	1.0 (-)	0,011	1.0 (-)	0,002	1.0 (-)	1,002	1.0 (-)	10,011
WBV exposure	ves	1,166	,794	1.288	.885	.834	,437	.466	.184
	,	,	1,714	,	1,875	,	1,591	,	1,184
Previous job with	no	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
heavy physical load	yes	1,853	1,254	1,361	,926	1,170	,611	,734	,289
			2,737		1,998		2,241		1,864
Sitting > 3h at work	no	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
	yes	1,009	,683	,988	,676	,689	,355	,832	,321
To a la la sust a traversita		10()	1,490	10()	1,445	4.0.()	1,338	10()	2,158
I runk bent at work	no	1.0 (-)	026	1.0 (-)	1 101	1.0 (-)	1 196	1.0 (-)	751
	yes	1,400	,930	1,794	1,10 4 2,718	2,200	1,100	1,940	,701
Trunk twisted at work	no	10(-)	2,117	10(-)	2,710	10(-)	4,400	10(-)	5,040
	Ves	1.0 (-)	876	1.0 (-)	806	3.050	1 569	2 184	841
	,	1,000	1.953	1,100	1.779	0,000	5.931	_,	5.666
Lifting at work	no	1.0 (-)	,	1.0 (-)	, -	1.0 (-)	-)	1.0 (-)	-,
5	yes	1,950	1,309	1,794	1,204	4,374	2,177	2,514	,928
			2,905		2,672		8,791		6,813
Lifting & bending	no	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
at work	yes	1,910	1,283	1,731	1,184	3,968	1,779	2,583	,809
			2,842		2,530		8,851		8,247
Lifting & twisting	no	1.0 (-)	4 40 4	1.0 (-)	4.000	1.0 (-)	0.000	1.0 (-)	4 007
at work	yes	2,149	1,434	1,500	1,000	4,431	2,222	2,719	1,007
Back bont forward or	PO	10()	3,221	10()	2,249	10()	0,037	10()	1,338
twisted while driving		1 1 1 9 0	804	1.0 (-)	696	818	429	803	340
	ycs	1,100	,004 1.759	1,017	,000	,010	1.561	,000	2.350
L			, -		,	1	,		, -

Table 6b. Binary logistic regression for the association between low back pain (LBP) symptoms in the previous 12 months (acute LBP, sciatica, treated LBP, sick leave due to LBP) various individual and work-related risk factors in the professional drivers (n=230) over one-year follow-up period. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

,	ł	Acute I	_BP	Sc	iatica	Tre	ated LBP	Sic	k leave
Factors			5% CI)		5% CI)		5% CI)	(>/	days)
	<35			10(-)	/// OI)	10(-)	7/0 CT)		<i>7/</i> 0 OI)
, ige (ji)	36-41	1.998	1 017	2 156	878	1.0 ()	561	1.0 ()	276
	00 11	1,000	3 924	2,100	5 295	1,100	3 764	1,200	5 972
	42-48	1.052	.579	2,308	1,048	2,185	.986	2,708	.817
		,	1,913		5,085	,	4,840	,	8,979
	>48	,732	,436	2,458	1,219	2,003	,984	1,960	,640
			1,228		4,956		4,076		6,000
BMI (kg/m ²)	<25	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
	25-27	1,131	,671	,800	,397	,844	,444	1,154	,447
			1,906		1,615		1,601		2,983
	>27	,932	,583	2,161	1,234	,907	,517	1,054	,444
Orachina		10()	1,489	10()	3,787	10()	1,592	10()	2,502
Smoking no sr	noking	1.0(-)	1 000	1.0 (-)	660	1.0 (-)	702	1.0(-)	902
ex-s	smoker	2,029	3 368	1,100	,002 2.034	1,447	,793	2,037	,002 5 174
current	moker	1 810	1 120	1 050	2,034 615	1 401	2,030	1 872	752
Guirente	SHOKE	1,010	2 904	1,000	1 825	1,401	2 492	1,072	,752
Drinking (unit/week)	0	1.0 (-)	2,001	1.0 (-)	1,020	1.0 (-)	2,102	1.0 (-)	1,000
(1-3	1,318	,723	,717	,360	,629	,298	,606	,157
			2,403	, , , , , , , , , , , , , , , , , , ,	1,430		1,327		2,337
	4-6	,822	,441	,681	,339	,823	,402	1,777	,591
			1,534		1,367		1,684		5,345
	>6	1,099	,623	,882	,473	,920	,479	1,536	,532
			1,937		1,643		1,767		4,435
Married	no	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
	yes	1,993	1,018	1,703	,721	1,020	,459	1,226	,342
Drovious isbo with	no	10()	3,902	10()	4,022	10()	2,264	10()	4,393
		1.0 (-)	022	1.0 (-)	622	T.U (-)	460	1.0 (-) 861	407
	yes	1,301	,922	,975	,022	,730	,400	,001	, 4 27 1 738
Previous job with	no	10(-)	2,010	10(-)	1,021	10(-)	1,100	10(-)	1,700
heavy physical load	ves	2.028	1.367	1.399	.890	1.004	.622	1.954	.963
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		3,009	,	2,199	,	1,621	,	3,965
Sitting > 3h at work	no	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
	yes	1,092	,737	,844	,534	1,063	,659	,530	,252
			1,619		1,333		1,714		1,113
Trunk bent at work	no	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
	yes	1,824	1,212	1,908	1,194	1,404	,857	1,997	,979
To only to detail at some of a		10()	2,745	10()	3,051	4.0 ()	2,298	10()	4,074
I runk twisted at work	no	1.0 (-)	097	1.0 (-)	1 167	1.0 (-)	962	1.0 (-)	1 0 9 9
	yes	1,475	,907	1,000	1,107	1,402	,003	2,214	1,000
Lifting at work	no	10(-)	2,200	10(-)	2,940	10(-)	2,270	10(-)	4,505
Linting at work	ves	1.0 (-)	1 332	2.063	1 300	2 147	1 327	2 591	1 262
	yee	1,007	2.964	2,000	3.273	2,177	3.475	2,001	5.320
Lifting & bending	no	1.0 (-)	,	1.0 (-)	-,	1.0 (-)	-,	1.0 (-)	-,-=-
at work	yes	2,137	1,428	2,458	1,519	2,243	1,357	2,660	1,208
	-		3,195		3,978		3,708		5,861
Lifting & twisting	no	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
at work	yes	2,506	1,669	2,428	1,526	2,501	1,537	3,160	1,540
			3,764		3,864		4,071		6,487
Back bent forward or	no	1.0 (-)	700	1.0 (-)	F 40	1.0 (-)	000	1.0 (-)	750
twisted while driving	yes	1,086	,732	,805	,512	1,533	,936	1,598	,752
			ווס,ו		1,204		∠,⊃TU		৩, ১90

Table 7a. Binary logistic regression for the association between low back pain (LBP) symptoms in the previous 12 months (acute LBP, sciatica, treated LBP, sick leave due to LBP) and various individual and work-related risk factors in the professional drivers (n=230) over one-year follow-up period. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

Factor	7-0	lay LBP	12-n	nonth LBP	High p	ain intensity	LBP	disability
	OR (95	5% CI)	OR (95	5% CI)	OR (95	5% CI)	OR (95	% CI)
Job satisfaction in general: very satisfied very dissatisfied dissatisfied not satisfied/not dissatisfied	1.0 (-) ,000 5,662 ,783	,000 ,564 56,812 ,352	1.0 (-) ,000 2,220 ,956	,000 ,222 22,239 ,451	1.0 (-) ,000 2,880 ,897	,000 ,269 30,820 ,256	1.0 (-) ,000 13,857 2,951	,000 ,949 202,357 ,465
satisfied	1,017	1,745 ,625 1,654	1,066	2,028 ,663 1,716	,797	3,151 ,357 1,779	1,983	18,740 ,440 8,933
Content of work: very satisfied very dissatisfied	1.0 (-)	,	1.0 (-)	,	1.0 (-)	,	1.0 (-)	,
dissatisfied	1,629	,377 7,031	,726	,166 3,171	3,662	,408 32,868	4,605	,279 75,929
not satisfied/not dissatisfied	1,072	,496 2,316 444	1,552	,697 3,456 665	,765 810	,190 3,084 319	2,603	,374 18,113 367
Satistieu	,740	, ,,, , 1,234	1,101	,003 1,823	,013	,319 2,101	1,771	,507 8,555
Job independency: very satisfied very dissatisfied	1.0 (-) -		1.0 (-)		1.0 (-)		1.0 (-) -	
dissatisfied	,252	,030 2,099	1,090	,276 4,302	,000	,000,	,000,	,000 .
not satisfied/not dissatisfied	4,099	1,623 10,358	8,093	1,823 35,927	2,920	,859 9,925	4,418	,957 20,403
satisfied	1,133	,738 1,740	1,037	,688 1,561	,637	,275 1,477	1,223	,354 4,223
Communication colleagues:								
very satisfied very dissatisfied	1.0 (-) 3,539	,308 40,668	1.0 (-) ,000		1.0 (-) 2,922	,158 53,998	1.0 (-) ,000	,000
dissatisfied	1,406	,477 4.150	2,971	,784 11.263	1,028	,161 6.555	1,397	,115 17.014
not satisfied/not dissatisfied	1,123	,578 2,185	1,247	,636 2,447	,732	,199 2,684	1,638	,314 8,530
satisfied	,913	,557 1,497	,799	,491 1,301	1,058	,415 2,695	1,537	,394 6.000
Communication executives:) -		,		,		- /
very satisfied very dissatisfied	1.0 (-) 1,397	,369 5,291	1.0 (-) 1,413	,332 6.016	1.0 (-) 1,918	,259 14,204	1.0 (-) 5,874	,290 118,969
dissatisfied	,313	,106 .927	,644	,260 1,597	,000	,000,	,000,	,000
not satisfied/not dissatisfied	1,173	,640 2,150	1,449	,762 2,758	1,086	,371 3,177	4,787	,553 41,437
satisfied	,573	,329 ,996	,634	,364 1,105	1,170	,425 3,220	4,660	,560 38,761
Relation colleagues:	4.0.()		4.0.()		4.0 ()		10()	
very satisfied very dissatisfied	1.0 (-) ,739	,064 8.484	1.0 (-) 1,677	,146 19.284	1.0 (-) ,000	,000	1.0 (-) ,000	,000
dissatisfied	,567	,057 5,665	,280	,028 2,817	,000,	,000	,000,	,000
not satisfied/not dissatisfied	,735	,328	1,112	,511	,382	,070	1,186	,193

satisfied	,834	1,650 ,531 1,311	1,151	2,421 ,737 1,799	,408	2,071 ,181 ,920	,711	7,300 ,239 2,112
Feedback about iob done:		,		,		,		,
verv satisfied	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
verv dissatisfied	.484	.110	1.727	.320	.000		13.843	.771
,	,	2,122	,	9,336	,		,	248,640
dissatisfied	,399	,179	,569	,253	,735	,181	1,142	,136
		,891		1,281		2,984	,	9,600
not satisfied/not dissatisfied	,725	,356	,971	,447	,603	,183	,946	,152
		1,478		2,107		1,982		5,899
satisfied	,541	,280	,507	,251	,493	,168	1,189	,230
		1,044		1,023		1,450		6,132
Financial reward:								
very satisfied	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
very dissatisfied	,411	,081	1,787	,337	,598	,050	1,567	,182
		2,098		9,492		7,160		13,500
dissatisfied	,380	,099	1,529	,392	,906	,132	,569	,064
		1,468		5,967		6,200		5,040
not satisfied/not dissatisfied	,446	,119	1,719	,452	,339	,050	,229	,022
		1,672		6,537		2,306		2,393
satisfied	,270	,072	,852	,226	,171	,023	,000,	,000,
		1,016		3,206		1,282		
Job opportunity:								
very satisfied	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
very dissatisfied	,269	,062	,453	,102	1,385	,146	3,385	,198
		1,163		2,003		13,133		57,953
dissatisfied	,509	,150	1,332	,353	,318	,061	3,561	,313
	005	1,722	740	5,032		1,662	0.40	40,542
not satisfied/not dissatisfied	,295	,093	,710	,209	,220	,046	,819	,072
	044	,935	454	2,416	4 4 7	1,067	4 4 4 0	9,327
satisfied	,241	,077	,451	,135	,147	,030	1,113	,108
		,154		1,509		,714		11,508

Table 7b. Binary logistic regression for the association between low back pain (LBP) symptoms (7-day LBP, 12-month LBP, high pain intensity in the lower back (Von Korff pain scale score > 5) during the previous 12 months, disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP) and job satisfaction and other psychosocial factors in the professional drivers (n=230) over one-year follow-up period. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time.

Factor	Acute LBP	Sciatica	Treated LBP	Sick leave (>7 days)
	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Job satisfaction in general: very satisfied very dissatisfied dissatisfied	1.0 (-) ,000 ,000 8,545 ,845 86,391	1.0 (-) ,000 ,000 12,636 1,234 129,390	1.0 (-) ,000 ,000 10,384 1,017 106,037	2.0 (-) ,000 ,000 13,862 1,626 118,162
not satisfied/not dissatisfied satisfied	1,618 ,735 3,563 1,489 ,893	1,511 ,628 3,637 1,136 ,625	,937 ,380 2,309 ,704 ,393	1,419 ,372 5,411 1,019 ,396
Or and and a final state	2,485	2,065	1,262	2,621
Very satisfied	1.0 (-) -	1.0 (-)	1.0 (-)	1.0 (-) -
dissatisfied	2,177 ,495 9,575	1,301 ,235 7,214	1,157 ,210 6,374	1,338 ,140 12,764
not satisfied/ not dissatisfied	2,279 1,040 4,994	1,828 ,771 4,335	1,192 ,485 2,929	1,474 ,433 5,013
sausneu	2,060	,927 ,499 1,720	1,303	,042 ,200 1,586
Job independency: very satisfied	1.0 (-)	1.0 (-)	1.0 (-)	1.0 (-)
very dissatisfied dissatisfied	- 2,606 ,651 10,424	,415 ,049 3 511	- 1,163 ,223 6 056	- 1,009 ,113 8 995
not satisfied/ not dissatisfied	4,085 1,633 10,215	4,515 1,800 11,329	5,081 2,012 12,833	2,536 ,808 7,963
satisfied	1,394 ,897 2,165	1,052 ,633 1,749	,932 ,545 1,592	,491 ,225 1,071
Communication colleagues:	10()		10()	
very satisfied very dissatisfied	1.0 (-) ,000 .	1.0 (-) 7,969 ,682 93.095	1.0 (-) ,000	1.0 (-) 4,810 ,391 59,195
dissatisfied	3,018 1,010 9,014	,856 ,219 3,349	2,013 ,646 6,276	1,220 ,235 6,334
not satisfied/not dissatisfied	1,720 ,866 3,413	1,434 ,668 3,077	1,130 ,529 2,415	,872 ,291 2,611
satistied	1,400 ,830 2,362	1,044 ,576 1,892	,ວອອ ,329 1,092	,ə44 ,231 1,284
Communication executives:				
very satisfied very dissatisfied	1.0 (-) 8,276 1,891 36 214	1.0 (-) 2,258 ,557 9 153	1.0 (-) ,724 ,139 3 780	1.0 (-) ,925 ,100 8.527
dissatisfied	1,473 ,540 4,015	,958 ,325 2,824	,508 ,153 1,692	,325 ,038 2,796
not satisfied/not dissatisfied	2,587 1,324 5,054	1,477 ,730 2,991	1,106 ,553 2,212	1,046 ,389 2,814
satisfied	1,480 ,798 2,746	,718 ,368 1,402	,468 ,240 ,910	,507 ,193 1,332
Relation colleagues:	10()	10()	100	10()
very satisfied very dissatisfied	1.0 (-) 1,430 ,124 16.547	1.0 (-) 1,444 ,124 16.844	1.0 (-) 9,479 ,804 111.795	1.0 (-) ,000 ,000
dissatisfied	,749 ,074	,000 ,000	,000, 000,	,000, 000,

	==	7,609			4.075			
not satisfied/not dissatisfied	1,475	,671 3 243	,984	,397 2 437	1,875	,115 1533	1,541	,493 4 813
satisfied	1,153	.721	.861	2,437	.931	-,523	.499	.222
	.,	1,842	,	1,459	,	1,656	,	, 1,122
Feedback about job done:								
very satisfied	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	
very dissatisfied	2,090	,516	2,713	,653	2,623	,631	1,809	,294
disactisfied	1 1 1 0	8,471	EAE	11,269	606	10,898	102	11,119
uissatistieu	1,410	,032 3 182	,545	,217 1 367	,000	,240 1 <u>4</u> 00	,103	,035 957
not satisfied/not dissatisfied	1.631	.771	.869	.387	.722	.318	.625	.209
	.,	3,447	,	1,949	,	1,637	,•=•	1,865
satisfied	,894	,442	,539	,253	,373	,172	,346	,123
		1,807		1,148		,811		,976
Financial reward:								
very satisfied	1.0 (-)		1.0 (-)		1.0 (-)		1.0 (-)	o (-
very dissatisfied	2,031	,372	2,608	,244	,869	,153	,419	,047
dissatisfied	1 016	11,099	2 026	27,914	540	4,948	360	3,723
uissatistieu	1,910	, 4 52 8 124	2,920	,347 24 692	,343	2 384	,309	,003 2 095
not satisfied/not dissatisfied	1,998	.483	2,283	.275	.461	.109	.178	,031
	,	8,263	,	18,968	,	1,949	·	1,020
satisfied	,830	,199	1,394	,167	,260	,060	,149	,026
		3,452		11,663		1,120		,863
Job opportunity:	10()		4.0.()		10()		10()	
very satisfied	1.0 (-)	100	1.0 (-)	070	1.0 (-)	072	1.0 (-)	006
very dissatistied	,507	,123	,322	,072 1 443	,322	,073	,307	,090 3 583
dissatisfied	1 087	327	417	123	435	129	550	120
	1,007	3,610	,	1,418	,100	1,460	,000	2,517
not satisfied/not dissatisfied	,473	,153	,288	,091	,208	,066	,247	,057
		1,459		,912		,659		1,067
satisfied	,218	,071	,172	,054	,144	,046	,171	,040
		,673		,542		,452		,737

Table 8. Binary logistic regression of low back pain (LBP) symptoms (7-day LBP, 12-month LBP, and high pain intensity (Von Korff pain scale score > 5), LBP disability (Roland & Morris disability scale score \geq 12), treated LBP, sick leave due to LBP in the previous 12 months) on groups of professional drivers over one-year follow-up period, assuming the driver group with the lowest WBV exposure (V&W, ZH) as the reference category. Odds ratios (OR) and 95% confidence intervals (95% CI) are adjusted by age and follow-up time. One-year incidence of LBP outcomes (%) within each driver group is also given.

	Driver groups in t	he different companie	<u>group io aloo givoin.</u> Is			
Outcome			.0			
	10	1	2	3	4	5
	(n=11)	(n=11)	(n=10)	(n=25)	(n=13)	(n=2)
7-day LBP (%)	10.0	33.3	14.3	15.8	0.0	0.0
OR	1.0	,164	,063	,427	,489	-
(95% CI)	(-)	,028 ,954	,007 ,579	,138 1,320	,091 2,636	
12-month LBP (%)	0.0	66.7	28.6	15.8	0.0	0.0
OR	1.0	,287	,235	1,047	1,214	-
(95% CI)	(-)	,064 1,301	,054 1,033	,335 3,269	,224 6,590	
Acute LBP (%)	0.0	16.7	14.3	5.3	0.0	0.0
OR	1.0	,080,	,068	,545	,358	2,326
(95% CI)	(-)	,009 ,746	,007 ,634	,178 1,666	,057 2,231	,201 26,960
Sciatica (%)	0.0	0.0	28.6	5.3	0.0	0.0
OR	1.0	,000	,227	,493	,000,	,949
(95% CI)	(-)	,000 .	,040 1,303	,151 1,606	,000 .	,071 12,672
High pain intensity (%)	10.0	0.0	14.3	5.3	0.0	0.0
OR	1.0	,000	,200	,081	,000,	1,205
(95% CI)	(-)	,000 .	,021 1,907	,009 ,753	,000 .	,096 15,080
LBP disability (%)	10.0	0.0	0.0	0.0	0.0	0.0
OR	1.0	,000	,000	,000	,481	2,530
(95% CI)	(-)	,000 .	,000 .	,000 .	,044 5,231	,170 37,736
Treated LBP (%)	0.0	0.0	14.3	10.5	0.0	0.0
OR	1.0	,000	,124	,399	,835	,649
(95% CI)	(-)	,000 .	,013 1,148	,115 1,380	,153 4,546	,055 7,664
Sick leave (> 7d) (%)	0.0	16.7	0.0	0.0	0.0	0.0
OR	1.0	,553	,000	,770	1,595	,000
(95% CI)	(-)	,050 6,150	,000 .	,148 4,018	,209 12,203	,000 .
	Driver groups					
Outcome						

	7	8	9	11	12	13
	(n=13)	(n=5)	(n=57)	(n=6)	(n=13)	(n=128)
7-day LBP (%)	20.0	0.0	23.3	0.0	18.2	17.1
OR	,273	1,376	,396	,164	,568	,444
(95% CI)	,071 1,055	,250 7,561	,145 1,084	,016 1,673	,166 1,944	,175 1,129
12-month LBP (%)	30.0	0.0	16.3	0.0	9.1	9.0
OR	,575	-	,947	-	,593	,832
(95% CI)	,162 2,040		,344 2,606		,172 2,035	,324 2,136
Acute LBP (%)	20.0	0.0	14.0	0.0	18.2	7.2
OR	,473	2,430	,562	,451	,626	,386
(95% CI)	,131 1,710	,382 15,443	,207 1,523	,066 3,103	,183 2,145	,151 ,983
Sciatica (%)	30.0	0.0	9.3	0.0	0.0	11.8
OR	,256	1,765	,375	,690	,140	,406
(95% CI)	,056 1,172	,325 9,580	,131 1,067	,099 4,799	,025 ,770	,157 1,047
High pain intensity (%)	0.0	0.0	4.7	33.3	9.1	5.4
OR	,000	1,109	,257	,517	,127	,284
(95% CI)	,000 .	,161 7,660	,073 ,905	,048 5,545	,014 1,185	,097 ,831
LBP disability (%)	0.0	0.0	0.0	0.0	0.0	3.6
OR	,000	,000	,126	,000	,000	,303
(95% CI)	,000 .	,000 .	,020 ,778	,000 .	,000 .	,086 1,074
Treated LBP (%)	0.0	0.0	9.3	33.3	0.0	9.0
OR	,000	1,125	,364	1,649	,364	,374
(95% CI)	,000 .	,200 6,337	,124 1,066	,258 10,521	,088 1,499	,142 ,987
Sick leave (> 7d) (%)	0.0	25.0	4.7	0.0	9.1	3.6
OR	,000	2,364	,648	,000	,591	,341
(95% CI)	,000 .	,292 19,152	,150 2,803	,000 .	,087 4,039	,086 1,356

Table 9a. Binary logistic regression of low back pain in the previous 7 days on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measur	e of daily WBV exposu	ire		LR test $(\gamma^2, 3df)$
		Q1	Q2	Q3	Q4	(,, , , , , , , , , , , , , , , , , , ,
Daily driving time (h)	median	5.0	8.0	9.4	11.0	6.0506
OR		1.0	1.509	2.075	1.475	0.1092
	(95% CI)	(-)	0.818 2.786	1.158 3.720	0.696 3.126	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	1.1169
	OR	1.0	0.836	0.722	0.820	0.7730
	(95% CI)	(-)	0.458 1.524	0.392 1.331	0.452 1.489	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	3.6110
	OR	1.0	1.045	0.586	0.810	0.3066
	(95% CI)	(-)	0.594 1.837	0.299 1.147	0.435 1.510	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	4.6941
	OR	1.0	0.777	0.512	0.895	0.1956
	(95% CI)	(-)	0.429 1.406	0.271 0.968	0.497 1.614	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	3.6863
	OR	1.0	0.997	0.583	0.994	0.2974
	(95% CI)	(-)	0.542 1.835	0.313 1.086	0.565 1.749	

Table 9b. Binary logistic regression of low back pain in the previous 7 days on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given. The likelihood ratio (LR) test for the measures of WBV exposure and the Bayesan Information Criteria (BIC) for comparison between models are given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	(), ,,
Exposure duration (yr) median	3.2	10.1	21.6	34.8	4.1716
OR	1.0	0.726	1.404	1.109	0.2435
(95% CI)	(-)	0.385 1.369	0.748 2.637	0.524 2.348	
$\sum[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	3.6200
OR	1.0	1.054	1.513	1.830	0.3055
(95% CI)	(-)	0.561 1.980	0.778 2.940	0.884 3.791	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	2.9789
OR	1.0	1.071	0.980	1.620	0.3949
(95% CI)	(-)	0.574 1.998	0.512 1.877	0.808 3.250	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	3.9204
OR	1.0	0.775	0.609	1.061	0.2702
(95% CI)	(-)	0.424 1.417	0.324 1.146	0.560 2.009	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	3.4130
OR	1.0	0.575	0.842	0.923	0.3322
(95% CI)	(-)	0.310 1.067	0.465 1.523	0.499 1.704	
$\sum [a_{wgi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	6.9040
OR	1.0	0.782	0.720	1.545	0.0750
(95% CI)	(-)	0.423 1.444	0.376 1.380	0.795 3.002	
$\sum [a_{wgi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	3.8046
OR	1.0	0.774	0.634	1.102	0.2833
(95% CI)	(-)	0.424 1.413	0.339 1.187	0.584 2.078	
$\sum [a_{wgi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	4.6734
OR	1.0	0.516	0.832	0.881	0.1973
(95% CI)	(-)	0.276 0.964	0.461 1.501	0.477 1.629	

Table 10a. Binary logistic regression of low back pain in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given. The likelihood ratio (LR) test for the measures of WBV exposure and the Bayesan Information Criteria (BIC) for comparison between models are given.

Measures of daily WBV exposure		Quartiles of measu	re of daily WBV exp	osure		LR test $(\gamma^2, 3df)$
		Q1	Q2	Q3	Q4	(), (0.1)
Daily driving time (h)	median	5.0	8.0	9.4	11.0	4.2805
	OR	1.0	0.902	1.327	1.587	0.2327
	(95% CI)	(-)	0.537 1.517	0.798 2.204	0.813 3.098	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	1.7595
	OR	1.0	0.823	0.777	0.699	0.6238
	(95% CI)	(-)	0.474 1.428	0.446 1.351	0.408 1.198	
$A_{\rm dom}(8) ({\rm ms}^{-2} {\rm r.m.s.})$	median	0.18	0.32	0.39	0.53	1.3109
, , , , , , , , , , , , , , , , , , , ,	OR	1.0	0.889	0.741	0.777	0.7265
	(95% CI)	(-)	0.525 1.506	0.417 1.318	0.444 1.360	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	7.0628
	OR	1.0	0.499	0.689	0.877	0.0699
	(95% CI)	(-)	0.287 0.867	0.394 1.205	0.505 1.520	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	1.6198
	OR	1.0	0.907	0.867	1.211	0.6549
	(95% CI)	(-)	0.518 1.589	0.511 1.470	0.723 2.031	

Table 10b. Binary logistic regression of low back pain in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, marital status, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	0.9136
OR	1.0	0.907	1.186	1.073	0.8222
(95% CI)	(-)	0.521 1.578	0.661 2.130	0.553 2.082	
$\sum [t_i] (h \times 10^3)$ median	4.6	16.7	34.9	60.7	6.5962
OR	1.0	1.255	2.141	1.482	0.0859
(95% CI)	(-)	0.718 2.192	1.177 3.895	0.778 2.823	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	0.5396
OR	1.0	1.201	1.007	1.040	0.9101
(95% CI)	(-)	0.679 2.122	0.570 1.778	0.557 1.941	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	1.4817
OR	1.0	0.939	1.079	0.774	0.6865
(95% CI)	(-)	0.538 1.640	0.613 1.899	0.428 1.402	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	2.0737
OR	1.0	0.772	1.120	0.863	0.5573
(95% CI)	(-)	0.447 1.331	0.644 1.948	0.492 1.512	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	0.6562
OR	1.0	1.200	0.989	1.123	0.8835
(95% CI)	(-)	0.684 2.104	0.562 1.738	0.609 2.071	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	1.7831
OR	1.0	0.906	1.213	0.856	0.6186
(95% CI)	(-)	0.521 1.575	0.690 2.131	0.475 1.545	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	4.9555
OR	1.0	0.697	1.246	0.807	0.1751
(95% CI)	(-)	0.403 1.205	0.709 2.192	0.457 1.424	

Table 11a. Binary logistic regression of acute low back pain in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, previous jobs at risk, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily		Quartiles of measu	re of daily WBV exp	osure		LR test
WBV exposure						$(\chi^{2}, 3df)$
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	7.7566
	OR	1.0	1.513	2.124	1.992	0.0513
	(95% CI)	(-)	0.831 2.756	1.212 3.722	0.993 3.995	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	2.1917
	OR	1.0	1.468	1.004	1.156	0.5336
	(95% CI)	(-)	0.815 2.645	0.546 1.848	0.636 2.099	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	2.0596
	OR	1.0	1.096	0.723	1.068	0.5601
	(95% CI)	(-)	0.625 1.921	0.378 1.382	0.582 1.958	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	0.6176
	OR	1.0	0.828	0.935	1.039	0.8924
	(95% CI)	(-)	0.452 1.517	0.513 1.706	0.575 1.877	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	1.3102
	OR	1.0	0.811	0.939	1.172	0.7267
	(95% CI)	(-)	0.433 1.520	0.524 1.683	0.668 2.057	

Table 11b. Binary logistic regression of acute low back pain in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative	Quartiles of measure of cumulative WBV exposure				
WBV exposure	01	01	02	04	(χ ⁻ , 3 <i>at</i>)
	QI	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	2.6798
OR	1.0	1.221	1.617	1.656	0.4437
(95% CI)	(-)	0.674 2.213	0.867 3.016	0.788 3.480	
$\Sigma[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	9.7908
OR	1.0	1.900	1.887	3.237	0.0204
(95% CI)	(-)	1.025 3.522	0.964 3.693	1.541 6.800	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	6.2678
OR	1.0	1.727	1.419	2.335	0.0993
(95% CI)	(-)	0.939 3.177	0.751 2.681	1.160 4.699	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	4.6907
	1.0	1.677	1.479	1.989	0.1959
(95% CI)	(-)	0.917 3.066	0.798 2.740	1.033 3.832	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	1.1811
OR	1.0	1.188	1.332	1.340	0.7575
(95% CI)	(-)	0.657 2.146	0.739 2.400	0.726 2.473	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	11.4287
OR	1.0	2.030	1.431	2.963	0.0096
(95% CI)	(-)	1.107 3.724	0.748 2.739	1.486 5.907	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	7.3004
OR	1.0	1.933	1.500	2.304	0.0629
(95% CI)	(-)	1.057 3.535	0.808 2.786	1.195 4.440	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	2.9633
OR	1.0	0.903	1.447	1.257	0.3973
(95% CI)	(-)	0.497 1.642	0.809 2.586	0.683 2.314	

Table 12a. Binary logistic regression of sciatica in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, BMI, marital status, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily		Quartiles of measu	re of daily WBV exp	osure		LR test
WBV exposure						(χ ² , 3 <i>df</i>)
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	6.9356
	OR	1.0	0.912	1.958	1.430	0.0740
	(95% CI)	(-)	0.440 1.890	1.034 3.708	0.645 3.166	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	1.9715
	OR	1.0	1.109	1.065	0.696	0.5783
	(95% CI)	(-)	0.569 2.162	0.537 2.113	0.343 1.414	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	1.5579
	OR	1.0	1.367	1.072	0.924	0.6690
	(95% CI)	(-)	0.712 2.624	0.511 2.249	0.442 1.934	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	2.3962
	OR	1.0	0.933	0.726	1.262	0.4943
	(95% CI)	(-)	0.465 1.873	0.354 1.486	0.645 2.470	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	3.3537
	OR	1.0	0.848	0.662	1.270	0.3402
	(95% CI)	(-)	0.407 1.767	0.328 1.338	0.673 2.394	

Table 12b. Binary logistic regression of sciatica in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, BMI, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measu	LR test (χ ² , 3 <i>df</i>)			
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	5.5333
OR	1.0	0.475	0.819	1.150	0.1367
(95% CI)	(-)	0.219 1.030	0.400 1.675	0.511 2.589	
$\sum [t_i]$ (h × 10 ³) median	4.6	16.7	34.9	60.7	6.2702
OR	1.0	0.854	1.765	1.976	0.0992
(95% CI)	(-)	0.385 1.892	0.821 3.794	0.859 4.546	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	3.1438
OR	1.0	1.835	1.429	1.860	0.3700
(95% CI)	(-)	0.874 3.851	0.660 3.095	0.828 4.181	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	2.1875
	1.0	1.537	0.984	1.094	0.5344
(95% CI)	(-)	0.770 3.068	0.477 2.028	0.522 2.291	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	0.4079
OR	1.0	0.870	0.877	0.804	0.9386
(95% CI)	(-)	0.437 1.731	0.448 1.716	0.404 1.601	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	2.1759
OR	1.0	1.592	1.238	1.617	0.5367
(95% CI)	(-)	0.774 3.275	0.580 2.641	0.744 3.513	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	2.9711
OR	1.0	1.654	1.001	1.370	0.3961
(95% CI)	(-)	0.826 3.313	0.480 2.089	0.654 2.872	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	1.0726
OR	1.0	0.891	1.229	0.912	0.7837
(95% CI)	(-)	0.440 1.804	0.628 2.405	0.450 1.845	

Table 13a. Binary logistic regression of high pain intensity in the lower back (von korff pain scale > 5) on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, smoking, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily		Quartiles of measu	re of daily WBV exp	osure		LR test
WBV exposure						(χ ² , 3 <i>df</i>)
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	14.3401
	OR	1.0	1.965	5.623	0.783	0.0025
	(95% CI)	(-)	0.590 6.543	1.984 15.931	0.194 3.162	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	2.3889
	OR	1.0	0.517	0.634	0.518	0.4957
	(95% CI)	(-)	0.186 1.439	0.238 1.687	0.184 1.455	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	3.2813
	OR	1.0	1.391	0.471	0.821	0.3503
	(95% CI)	(-)	0.549 3.526	0.137 1.613	0.274 2.457	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	1.7329
	OR	1.0	0.954	0.730	0.518	0.6296
	(95% CI)	(-)	0.358 2.541	0.253 2.107	0.180 1.497	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	0.9022
. ,	OR	1.0	0.866	0.789	0.618	0.8249
	(95% CI)	(-)	0.304 2.470	0.277 2.246	0.227 1.687	

Table 13b. Binary logistic regression of high pain intensity in the lower back (von Korff pain scale > 5) on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, smoking, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	9.1507
OR	1.0	0.189	0.505	1.234	0.0274
(95% CI)	(-)	0.048 0.746	0.163 1.564	0.361 4.215	
$\sum[t_i]$ (h × 10 ³) median	4.6	16.7	34.9	60.7	5.0035
OR	1.0	0.372	1.088	1.477	0.1715
(95% CI)	(-)	0.090 1.539	0.326 3.623	0.406 5.366	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	1.5192
OR	1.0	0.797	0.475 0.139	0.736	0.6778
(95% CI)	(-)	0.267 2.373	1.621	0.234 2.322	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	4.6334
OR	1.0	0.511	0.322	0.424	0.2007
(95% CI)	(-)	0.176 1.481	0.107 0.976	0.149 1.202	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	7.0351
OR	1.0	0.248	0.419	0.386	0.0708
(95% CI)	(-)	0.073 0.842	0.156 1.121	0.144 1.034	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	1.2964
OR	1.0	0.731	0.511	0.745	0.7300
(95% CI)	(-)	0.246 2.173	0.159 1.640	0.247 2.249	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	2.2839
OR	1.0	0.681	0.459	0.537	0.5156
(95% CI)	(-)	0.241 1.924	0.155 1.356	0.187 1.544	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	5.1809
OR	1.0	0.329	0.464	0.406	0.1590
(95% CI)	(-)	0.103 1.052	0.172 1.255	0.149 1.106	

Table 14a. Binary logistic regression of disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measu	Quartiles of measure of daily WBV exposure						
		Q1	Q2	Q3	Q4				
Daily driving time (h)	median	5.0	8.0	9.4	11.0	6.4716			
	OR	1.0	6.870	9.611	5.149	0.0908			
	(95% CI)	(-)	1.044 45.212	1.671 55.298	0.769 34.465				
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	7.2833			
	OR	1.0	0.250	0.199	0.268	0.0634			
	(95% CI)	(-)	0.057 1.104	0.045 0.884	0.069 1.040				
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	3.6843			
, , ,	OR	1.0	0.426	0.287	0.364	0.2976			
	(95% CI)	(-)	0.116 1.568	0.062 1.342	0.091 1.455				
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	3.6325			
	OR	1.0	0.275	0.618 0.163	0.341	0.3040			
	(95% CI)	(-)	0.055 1.365	2.347	0.087 1.337				
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	6.4560			
	OR	1.0	0.105	0.531	0.258	0.0914			
	(95% CI)	(-)	0.015 0.739	0.139 2.025	0.063 1.056				

Table 14b. Binary logistic regression of disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, previous jobs at risks, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure					
	Q1	Q2	Q3	Q4		
Exposure duration (yr) median	3.2	10.1	21.6	34.8	1.7167	
OR	1.0	4.287	3.871	5.534	0.6332	
(95% CI)	(-)	0.395 46.574	0.352 42.607	0.394 77.813		
$\sum[t_i]$ (h × 10 ³) median	4.6	16.7	34.9	60.7	0.3621	
OR	1.0	-	-	-	0.9480	
(95% CI)	(-)					
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	9.5178	
OR	1.0	5.000	0.407	1.204	0.0231	
(95% CI)	(-)	0.774 32.287	0.038 4.375	0.163 8.914		
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	2.9605	
OR	1.0	0.490	0.270	0.386	0.3978	
(95% CI)	(-)	0.098 2.442	0.054 1.342	0.092 1.614		
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	8.9373	
OR	1.0	0.056	0.219	0.245	0.0301	
(95% CI)	(-)	0.006 0.520	0.049 0.983	0.064 0.942		
$\sum [a_{wai}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	9.5720	
OR	1.0	8.999	1.167	2.174	0.0226	
(95% CI)	(-)	0.945 85.652	0.090 15.075	0.205 23.077		
$\sum [a_{wgi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	1.7554	
OR	1.0	0.473	0.404	0.436	0.6247	
(95% CI)	(-)	0.096 2.325	0.088 1.857	0.101 1.881		
$\sum [a_{wgi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	6.9508	
OR	1.0	0.107	0.252	0.266	0.0735	
(95% CI)	(-)	0.015 0.754	0.056 1.137	0.068 1.047		

Table 15a. Binary logistic regression of treated LBP in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily		Quartiles of measu	Quartiles of measure of daily WBV exposure					
WBV exposure						(χ ² , 3 <i>df</i>)		
		Q1	Q2	Q3	Q4			
Daily driving time (h)	median	5.0	8.0	9.4	11.0	8.2294		
	OR	1.0	1.280	2.226	2.415	0.0415		
	(95% CI)	(-)	0.612 2.679	1.147 4.320	1.098 5.310			
$A_{\rm v}(8)$ (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	0.5268		
, , , , ,	OR	1.0	0.785	0.833	0.859	0.9130		
	(95% CI)	(-)	0.391 1.576	0.422 1.645	0.439 1.678			
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	2.0979		
	OR	1.0	0.963	0.596	0.934	0.5523		
	(95% CI)	(-)	0.505 1.835	0.276 1.283	0.470 1.856			
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	2.4565		
	OR	1.0	0.638	0.866	1.109	0.4832		
	(95% CI)	(-)	0.309 1.317	0.431 1.740	0.573 2.146			
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	2.4742		
,	OR	1.0	0.841	0.882	1.393	0.4800		
	(95% CI)	(-)	0.399 1.772	0.436 1.783	0.736 2.636			

Table 15b. Binary logistic regression of treated LBP in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure					
	Q1	Q2	Q3	Q4		
Exposure duration (yr) median	3.2	10.1	21.6	34.8	2.3346	
OR	1.0	0.588	0.805	0.926	0.5059	
(95% CI)	(-)	0.279 1.238	0.392 1.657	0.407 2.103		
$\sum[t_i]$ (h × 10 ³) median	4.6	16.7	34.9	60.7	2.8001	
OR	1.0	0.950	1.616	1.473	0.4235	
(95% CI)	(-)	0.437 2.068	0.749 3.486	0.636 3.409		
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	0.4992	
OR	1.0	1.189	1.227	1.329	0.9191	
(95% CI)	(-)	0.566 2.499	0.571 2.637	0.598 2.951		
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	1.7667	
OR	1.0	0.617	0.800	0.742	0.6222	
(95% CI)	(-)	0.300 1.270	0.400 1.597	0.362 1.517		
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	0.6893	
OR	1.0	0.980	0.770	0.968	0.8757	
(95% CI)	(-)	0.490 1.958	0.382 1.551	0.488 1.922		
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	1.4665	
OR	1.0	0.687	0.771	0.950	0.6900	
(95% CI)	(-)	0.334 1.414	0.370 1.605	0.453 1.991		
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	1.1684	
OR	1.0	0.677	0.861	0.810	0.7606	
(95% CI)	(-)	0.331 1.383	0.432 1.717	0.396 1.659		
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	2.4428	
OR	1.0	0.561	0.844	0.855	0.4857	
(95% CI)	(-)	0.269 1.170	0.433 1.644	0.435 1.682		

Table 16a. Binary logistic regression of sick leave (> 7 days) due to LBP in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measu	Quartiles of measure of daily WBV exposure					
		Q1	Q2	Q3	Q4			
Daily driving time (h)	median	5.0	8.0	9.4	11.0	5.0075		
	OR	1.0	0.697	1.243	2.418	0.1713		
	(95% CI)	(-)	0.218 2.230	0.481 3.209	0.871 6.714			
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	1.0493		
	OR	1.0	0.934	1.460	1.383	0.7893		
	(95% CI)	(-)	0.303 2.883	0.529 4.028	0.503 3.807			
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	3.3654		
	OR	1.0	0.665	1.542	1.635	0.3386		
	(95% CI)	(-)	0.216 2.043	0.544 4.368	0.598 4.468			
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	3.0801		
	OR	1.0	0.763	1.456	1.860	0.3794		
	(95% CI)	(-)	0.226 2.576	0.492 4.310	0.689 5.021			
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	3.0502		
	OR	1.0	0.706	1.459	1.825	0.3840		
	(95% CI)	(-)	0.196 2.542	0.507 4.194	0.702 4.742			

Table 16b. Binary logistic regression of sick leave (> 7 days) due to LBP in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	0.9207
OR	1.0	0.614	0.658	0.699	0.8204
(95% CI)	(-)	0.207 1.818	0.228 1.899	0.213 2.293	
$\sum [t]$ (h × 10 ³) median	4.6	16.7	34.9	60.7	0.7180
OR	1.0	1.432	1.027	1.014 0.289	0.8690
(95% CI)	(-)	0.472 4.345	0.314 3.365	3.554	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	2.0422
OR	1.0	2.070	1.222	1.222	0.5637
(95% CI)	(-)	0.663 6.463	0.348 4.286	0.348 4.286	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	0.9390
OR	1.0	1.644	1.534	1.656	0.8160
(95% CI)	(-)	0.534 5.064	0.498 4.726	0.527 5.204	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	2.2531
OR	1.0	0.449	1.091	0.986	0.5216
(95% CI)	(-)	0.132 1.532	0.417 2.857	0.369 2.632	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	3.4759
OR	1.0	2.169	0.977	1.913	0.3239
(95% CI)	(-)	0.704 6.681	0.269 3.545	0.570 6.421	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	1.8122
OR	1.0	1.957	2.070	2.043	0.6123
(95% CI)	(-)	0.606 6.322	0.652 6.570	0.619 6.746	
$\sum [a_{wqi}^{4}t_{i}] (m^{4}s^{-8}h \times 10^{3})$ median	0.1	0.36	0.99	4.09	3.7622
OR	1.0	0.337	1.250	0.989	0.2883
(95% CI)	(-)	0.087 1.307	0.486 3.217	0.367 2.667	

Table 17. Binary logistic regression of low back pain (LBP) symptoms (7-day LBP, 12-month LBP, and high pain intensity (Von Korff pain scale score \geq 5), LBP disability (Roland & Morris disability scale score \geq 12), treated LBP, sick leave due to LBP in the previous 12 months) on postural load index in the professional drivers over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (individual characteristics, vibration exposure, psychosocial factors, back trauma, previous jobs at risk, and follow-up time). The likelihood ratio (LR) test for postural load index is given.

Outcome	Postural load index	LR test $(\chi^2, 3df)$			
	Score 1	Score 1 – 1.9	Score 2 – 2.9	Score 3 – 4	
	(Mild)	(Moderate)	(Hard)	(Very hard)	
7-day LBP					5.5504
. OR	1.0	0.764	1.047	1.823	0.1357
(95% CI)	(-)	0.372 1.567	0.496 2.210	0.710 4.681	
12-month LBP					4.8920
OR	1.0	0.819	1.259	1.530	0.1799
(95% CI)	(-)	0.422 1.586	0.623 2.541	0.591 3.960	
Acute LBP					19.3608
OR	1.0	0.852	2.019	3.127	0.0002
(95% CI)	(-)	0.406 1.790	0.957 4.263	1.183 8.267	
Sciatica					3.2810
OR	1.0	1.651	2.160	2.387	0.3503
(95% CI)	(-)	0.639 4.265	0.826 5.651	0.729 7.813	
High pain intensity					10.1684
OR	1.0	0.863	3.383	2.253	0.0172
(95% CI)	(-)	0.170 4.380	0.720 15.882	0.349 14.524	
LBP disability					5.5444
OR	1.0	1.003	1.377	5.669	0.1360
(95% CI)	(-)	0.106 9.456	0.148 12.783	0.532 60.400	
Treated LBP					2.8609
OR	1.0	0.994	1.555	1.270	0.4136
(95% CI)	(-)	0.407 2.424	0.632 3.827	0.393 4.108	
Sick leave due to LBP (> 7d)					2.0819
OR	1.0	1.681	1.463	3.246	0.5556
(95% CI)	(-)	0.365 7.753	0.305 7.006	0.539 19.541	

Table 18. Random-intercept logistic regression of low back pain (LBP) symptoms (7-day LBP, 12-month LBP, and high pain intensity (Von Korff pain scale score \geq 5), LBP disability (Roland & Morris disability scale score \geq 12), treated LBP, sick leave due to LBP in the previous 12 months) on psychosocial load index in the professional drivers over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (individual characteristics, vibration exposure, back trauma, previous jobs at risk, and follow-up time). The likelihood ratio (LR) test for postural load index is given.

Outcome	Psychosocial lo	ad index (grade)			LR test $(\chi^2, 2df)$
	Score 1 (Mild)	Score 1 – 1.9 (Moderate)	Score 2 – 2.9 (Normal)	Score 3 – 3.9 (Hard)	
7-day LBP					
OR	1.0	1.281	1.345	-	0.9864
(95% CI)	(-)	0.773 2.123	0.562 3.218		0.6107
12-month LBP					
OR	1.0	1.508	1.796	-	3.0971
(95% CI)	(-)	0.925 2.459	0.715 4.507		0.2126
Acute LBP					
OR	1.0	1.815	2.849	-	6.1664
(95% CI)	(-)	1.030 3.198	1.144 7.097		0.0458
Sciatica					
OR	1.0	1.021	1.986	-	2.3798
(95% CI)	(-)	0.547 1.907	0.741 5.323		0.3043
High pain intensity					
OR	1.0	1.099	1.981	-	1.0193
(95% CI)	(-)	0.413 2.922	0.469 8.371		0.6007
LBP disability					
OR	1.0	1.090	3.777	-	5.1458
(95% CI)	(-)	0.510 2.329	1.070 13.332		0.0763
Treated LBP					
OR	1.0	0.838	2.672	-	7.9332
(95% CI)	(-)	0.456 1.541	1.060 6.735		0.0189
Sick leave due to LBP (>					
7d)	1.0	1.061	1.176	-	0.0452
OR	(-)	0.412 2.730	0.263 5.262		0.9777
(95% CI)					

Table 19

Adjusted estimates of the odds ratio (OR) and 95% confidence interval (95% CI) for low back pain (LBP) in the previous 12 months and disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP in the professional drivers according to work-related physical load variables.

Variable		12-month LBP	LBP disability
		OR (95% CI)	OR (95% CI)
Walking & standing at work	never	1.0 (-)	1.0 (-)
	<1 h/d	1,308 ,672	1,166 ,224
		2,547	6,074
	1-3 h/d	1,136 ,677	1,069 ,291
	> 0 h/d	1,906	3,928
	≥s n/u	1,000 ,074	5 029
Trunk bent 20° to 40°	never	1.0 (-)	1.0 (-)
	<1 h/d	1,846 ,942	2,533 ,647
		3,619	9,926
	1-2 h/d	2,458 1,307	2,200 ,656
		4,624	7,374
	>2 h/d	1,195 ,628	3,298 ,971
		2,271	11,199
Irunk bent > 40°	never		
	<0.5 N/a	2,113 1,100	4,030 1,332
	052b/d	3,030 1,511 952	1 4 4 5 3 9 2
	0.5-2 II/u	2 677	5 476
	>2 h/d	1 443 556	4 246 834
	d	3.743	21.608
Trunk twisted & bent 20° to 40°	never	1.0 (-)	1.0 (-)
	<1 h/d	1,261 ,722	1,102 ,230
		2,200	5,287
	1-2 h/d	1,169 ,644	3,302 1,050
	<u></u>	2,124	10,382
	>2 h/d	1,224 ,637	3,937 1,231
Truck twisted 2 bent > 40°	novor		
Trunk twisted & bent > 40	< 0.5 h/d	1.0 (-)	1.0 (-)
	<0.5 m/u	,307 ,303	5 670
	0.5-2 h/d	1.791 .996	3.925 1.387
		3.221	11,105
	>2 h/d	1,066 ,418	3,650 ,709
		2,719	18,775
Arms raised & hands above shoulders	never	1.0 (-)	1.0 (-)
	<1 h/d	,942 ,588	1,369 ,478
		1,509	3,918
	1-3 h/d	,588 ,241	-
		1,437	5,150 ,530
	>3 n/d	-	50,070
Lifting loads >15 kg	never	10(-)	10(-)
	1-15 min/d	1.967 1.240	2.923 .770
		,	,

			3,122		11,089
	15-45 min/d	2,694	1,501	2,345	,506
			4,836		10,860
	> 45 min/d	1,025	,508	5,786	1,198
			2,069		27,955
Back bent forward or twisted	never	1.0 (-)		1.0 (-)	
while driving	seldom	1,120	,721	1,110	,400
	often		1,741		3,078
		,932	,581	,962	,310
			1,495		2,981
Physical load index (grade)	mild	1.0 (-)		1.0 (-)	
	moderate	1,065	,544	,874	,099
			2,085		7,743
	hard	2,087	1,031	2,901	,360
			4,222		23,358
	very hard	2,134	,831	,874	,556
			5,484		50,512

Appendix Tables 2

Table 1a. Logistic regression within the transition model of low back pain in the previous 7 days on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measure	Quartiles of measure of daily WBV exposure					
		Q1	Q2	Q3	Q4			
Daily driving time (h)	median	5.0	8.0	9.4	11.0	4.3961		
OR		1.0	1.090	1.620	1.527	0.2217		
	(95% CI)	(-)	0.622 1.909	0.959 2.738	0.787 2.962			
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	1.7620		
	OR	1.0	0.845	0.683	0.859	0.6232		
	(95% CI)	(-)	0.481 1.487	0.388 1.202	0.496 1.490			
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	3.0630		
	OR	1.0	1.043	0.646	0.841	0.3820		
	(95% CI)	(-)	0.612 1.777	0.353 1.184	0.474 1.491			
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	6.5155		
	OR	1.0	0.754	0.506	0.979	0.0891		
	(95% CI)	(-)	0.430 1.322	0.282 0.909	0.567 1.689			
<i>VDV</i> _{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	5.1842		
	OR	1.0	1.096	0.612	1.134	0.1588		
	(95% CI)	(-)	0.616 1.950	0.349 1.072	0.672 1.913			

Table 1b. Logistic regression within the transition model of low back pain in the previous 7 days on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative	Quartiles of measu	re of cumulative WB	V exposure		LR test
WBV exposure					(χ², 3 <i>df</i>)
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	3.6008
OR	1.0	0.856	1.452	1.025	0.3079
(95% CI)	(-)	0.479 1.528	0.802 2.626	0.508 2.066	
$\sum[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	5.4786
OR	1.0	1.111	1.833	1.868	0.1399
(95% CI)	(-)	0.612 2.018	0.985 3.412	0.937 3.724	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	2.9929
OR	1.0	1.057	1.025	1.597	0.3927
(95% CI)	(-)	0.590 1.896	0.559 1.878	0.833 3.062	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	3.9810
OR	1.0	0.812	0.651	1.115	0.2635
(95% CI)	(-)	0.461 1.431	0.360 1.175	0.613 2.028	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	5.8866
OR	1.0	0.517	0.747	0.939	0.1173
(95% CI)	(-)	0.290 0.921	0.428 1.303	0.533 1.655	
$\sum [a_{wai}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	7.1330
OR	1.0	0.798	0.818	1.609	0.0678
(95% CI)	(-)	0.447 1.423	0.447 1.497	0.860 3.010	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	3.5319
OR	1.0	0.819	0.704	1.171	0.3166
(95% CI)	(-)	0.465 1.442	0.392 1.263	0.646 2.123	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	5.5787
OR	1.0	0.523	0.790	0.944	0.1340
(95% CI)	(-)	0.292 0.937	0.452 1.382	0.534 1.668	
Table 2a. Logistic regression within the transition model of low back pain in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measu	re of daily WBV exp	osure		LR test $(\gamma^2, 3df)$
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	4.6761
	OR	1.0	0.865	1.232	1.740	0.1971
	(95% CI)	(-)	0.503 1.487	0.729 2.083	0.867 3.493	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	1.8012
	OR	1.0	0.855	0.732	0.711	0.6147
	(95% CI)	(-)	0.482 1.517	0.414 1.295	0.407 1.242	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	1.4447
, , , , , , , , , , , , , , , , , , , ,	OR	1.0	0.910	0.723	0.782	0.6951
	(95% CI)	(-)	0.527 1.572	0.398 1.314	0.439 1.392	
VDV_{v} (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	6.9244
	OR	1.0	0.488	0.669	0.853	0.0743
	(95% CI)	(-)	0.276 0.863	0.377 1.190	0.482 1.510	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	1.5650
	OR	1.0	0.851	0.843	1.163	0.6673
	(95% CI)	(-)	0.476 1.521	0.495 1.436	0.682 1.982	

Table 2b. Logistic regression within the transition model of low back pain in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, marital status, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	0.7908
OR	1.0	0.898	1.151	1.112	0.8517
(95% CI)	(-)	0.506 1.593	0.627 2.114	0.557 2.217	
$\sum[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	4.3123
OR	1.0	1.184	1.881	1.459	0.2297
(95% CI)	(-)	0.665 2.110	1.012 3.498	0.745 2.855	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	0.3181
OR	1.0	1.126	0.961	1.037	0.9566
(95% CI)	(-)	0.625 2.030	0.533 1.733	0.542 1.985	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	0.8210
OR	1.0	1.017	1.063	0.829	0.8444
(95% CI)	(-)	0.571 1.812	0.591 1.910	0.446 1.539	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	1.6499
OR	1.0	0.754	1.065	0.898	0.6481
(95% CI)	(-)	0.429 1.327	0.600 1.891	0.500 1.611	
$\sum [a_{wgi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	0.5756
OR	1.0	1.106	0.939	1.143	0.9020
(95% CI)	(-)	0.619 1.978	0.523 1.689	0.605 2.162	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	1.0183
OR	1.0	0.946	1.175	0.888	0.7968
(95% CI)	(-)	0.533 1.679	0.655 2.107	0.480 1.643	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	3.7997
OR	1.0	0.698	1.187	0.828	0.2839
(95% CI)	(-)	0.396 1.232	0.661 2.130	0.458 1.495	

Table 3a. Logistic regression within the transition model of acute low back pain in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, previous jobs at risk, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measu	ire of daily WBV exp	osure		LR test (γ ² , 3 <i>df</i>)
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	8.1445
	OR	1.0	1.416	2.062	2.139	0.0431
	(95% CI)	(-)	0.782 2.564	1.186 3.584	1.066 4.293	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	2.0904
	OR	1.0	1.355	0.935	1.257	0.5539
	(95% CI)	(-)	0.754 2.435	0.512 1.707	0.697 2.269	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	2.6108
, , , , , , , , , , , , , , , , , , , ,	OR	1.0	1.078	0.738	1.228	0.4556
	(95% CI)	(-)	0.616 1.888	0.389 1.400	0.673 2.241	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	1.8133
	OR	1.0	0.743	0.938	1.102	0.6121
	(95% CI)	(-)	0.407 1.356	0.517 1.703	0.611 1.986	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	2.1004
	OR	1.0	0.833	1.034	1.317	0.5518
	(95% CI)	(-)	0.447 1.553	0.587 1.822	0.753 2.303	

Table 3b. Logistic regression within the transition model of acute low back pain in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative	Quartiles of measu	Quartiles of measure of cumulative WBV exposure				
WBV exposure					$(\chi^2, 3df)$	
	Q1	Q2	Q3	Q4		
Exposure duration (yr) median	3.2	10.1	21.6	34.8	3.1595	
OR	1.0	1.325	1.742	1.639	0.3677	
(95% CI)	(-)	0.732 2.396	0.934 3.251	0.780 3.443		
$\Sigma[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	9.8462	
OR	1.0	1.859	2.138	3.235	0.0199	
(95% CI)	(-)	1.003 3.443	1.103 4.146	1.545 6.773		
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	6.1142	
OR	1.0	1.564	1.312	2.300	0.1062	
(95% CI)	(-)	0.853 2.865	0.698 2.467	1.149 4.603		
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	5.1376	
OR	1.0	1.649	1.368	2.032	0.1620	
(95% CI)	(-)	0.906 3.001	0.743 2.520	1.064 3.878		
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	1.1722	
OR	1.0	1.048	1.189	1.360	0.7597	
(95% CI)	(-)	0.584 1.879	0.664 2.131	0.743 2.488		
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	12.0904	
OR	1.0	1.876	1.427	3.128	0.0071	
(95% CI)	(-)	1.022 3.442	0.749 2.719	1.575 6.214		
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	7.7704	
OR	1.0	1.871	1.406	2.348	0.0510	
(95% CI)	(-)	1.027 3.410	0.761 2.597	1.229 4.485		
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	2.5346	
OR	1.0	0.867	1.307	1.297	0.4691	
(95% CI)	(-)	0.479 1.569	0.734 2.329	0.711 2.368		

Table 4a. Logistic regression within the transition model of sciatica in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, BMI, marital status, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily		Quartiles of measu	re of daily WBV exp	osure		LR test
WBV exposure						(χ ² , 3 <i>df</i>)
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	7.1844
	OR	1.0	0.759	1.712	1.484	0.0662
	(95% CI)	(-)	0.374 1.540	0.925 3.171	0.685 3.213	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	0.6531
	OR	1.0	1.038	0.928	0.796	0.8842
	(95% CI)	(-)	0.538 2.002	0.478 1.801	0.402 1.576	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	0.6263
	OR	1.0	1.251	1.035	1.036	0.8904
	(95% CI)	(-)	0.661 2.370	0.505 2.119	0.510 2.105	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	3.5744
	OR	1.0	0.879	0.748	1.393	0.3112
	(95% CI)	(-)	0.442 1.748	0.372 1.504	0.722 2.691	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	4.1254
	OR	1.0	0.886	0.732	1.449	0.2482
	(95% CI)	(-)	0.433 1.814	0.373 1.436	0.781 2.688	

Table 4b. Logistic regression within the transition model of sciatica in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, BMI, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	2.8399
OR	1.0	0.578	0.914	1.012	0.4170
(95% CI)	(-)	0.279 1.199	0.458 1.825	0.461 2.218	
$\sum[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	6.9759
OR	1.0	0.881	1.946	1.969	0.0727
(95% CI)	(-)	0.406 1.913	0.922 4.109	0.875 4.434	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	3.0420
OR	1.0	1.679	1.368	1.905	0.3852
(95% CI)	(-)	0.810 3.481	0.640 2.923	0.865 4.193	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	2.3392
OR	1.0	1.507	0.949	1.260	0.5051
(95% CI)	(-)	0.764 2.971	0.467 1.929	0.611 2.598	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	0.7362
OR	1.0	0.775	0.805	0.925	0.8646
(95% CI)	(-)	0.395 1.519	0.416 1.556	0.473 1.809	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	2.8414
OR	1.0	1.497	1.224	1.819	0.4167
(95% CI)	(-)	0.732 3.059	0.580 2.583	0.850 3.895	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	3.3817
OR	1.0	1.569	0.993	1.582	0.3364
(95% CI)	(-)	0.791 3.111	0.482 2.045	0.767 3.263	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	0.6840
OR	1.0	0.844	1.116	1.057	0.8770
(95% CI)	(-)	0.423 1.684	0.578 2.157	0.533 2.097	

Table 5a. Logistic regression within the transition model of high pain intensity in the lower back (von korff pain scale > 5) on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, smoking, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measu	ire of daily WBV exp	osure		LR test $(\chi^2 - 3dt)$
		Q1	Q2	Q3	Q4	(₁ , 001)
Daily driving time (h)	median	5.0	8.0	9.4	11.0	9.8237
	OR	1.0	1.444	3.313	0.780	0.0201
	(95% CI)	(-)	0.484 4.309	1.331 8.245	0.208 2.932	
$A_{\rm v}(8)$ (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	2.9566
	OR	1.0	0.484	0.522	0.626	0.3984
	(95% CI)	(-)	0.183 1.279	0.206 1.327	0.240 1.635	
$A_{\rm dom}(8) \ (ms^{-2} r.m.s.)$	median	0.18	0.32	0.39	0.53	1.7758
, , , , , , , , , , , , , , , , , , , ,	OR	1.0	1.119	0.544	0.844	0.6202
	(95% CI)	(-)	0.469 2.669	0.173 1.713	0.307 2.326	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	0.8149
	OR	1.0	0.942	0.658	0.785	0.8459
	(95% CI)	(-)	0.374 2.374	0.241 1.799	0.295 2.088	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	0.5846
	OR	1.0	1.027	0.712	0.946	0.8999
	(95% CI)	(-)	0.391 2.694	0.265 1.916	0.373 2.394	

Table 5b. Logistic regression within the transition model of high pain intensity in the lower back (von Korff pain scale > 5) on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, smoking, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				LR test $(\chi^2, 3df)$
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	4.4391
OR	1.0	0.330	0.579	0.913	0.2178
(95% CI)	(-)	0.099 1.101	0.205 1.636	0.292 2.850	
$\sum[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	4.5392
OR	1.0	0.472	1.437	1.569	0.2088
(95% CI)	(-)	0.130 1.712	0.461 4.475	0.462 5.322	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	2.0750
OR	1.0	0.701	0.428	0.742	0.5570
(95% CI)	(-)	0.252 1.948	0.130 1.408	0.246 2.238	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	4.3795
OR	1.0	0.521	0.335	0.509	0.2233
(95% CI)	(-)	0.194 1.404	0.117 0.964	0.186 1.397	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	5.6969
OR	1.0	0.325	0.409	0.564	0.1273
(95% CI)	(-)	0.108 0.972	0.158 1.058	0.222 1.432	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	1.7112
OR	1.0	0.644	0.504	0.808	0.6344
(95% CI)	(-)	0.230 1.805	0.163 1.552	0.277 2.358	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	2.4707
OR	1.0	0.610	0.444	0.612	0.4806
(95% CI)	(-)	0.230 1.622	0.158 1.249	0.223 1.681	
$\sum [a_{wgi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	3.5964
OR	1.0	0.443	0.462	0.613	0.3085
(95% CI)	(-)	0.155 1.261	0.177 1.205	0.239 1.574	

Table 6a. Logistic regression within the transition model of disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily WBV exposure		Quartiles of measu	ire of daily WBV exp	osure		LR test $(\gamma^2 - 3dt)$
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	4.9624
	OR	1.0	3.635	5.949	4.065	0.1746
	(95% CI)	(-)	0.657 20.100	1.220 29.005	0.686 24.072	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	6.8887
	OR	1.0	0.269	0.239	0.396	0.0755
	(95% CI)	(-)	0.069 1.041	0.062 0.915	0.117 1.344	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	3.2439
, , , , , , , , , , , , , , , , , , , ,	OR	1.0	0.404	0.399	0.490	0.3555
	(95% CI)	(-)	0.124 1.314	0.101 1.579	0.139 1.722	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	2.2412
	OR	1.0	0.349	0.664	0.620	0.5239
	(95% CI)	(-)	0.086 1.421	0.194 2.276	0.186 2.070	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	2.3877
	OR	1.0	0.291	0.759	0.639	0.4959
	(95% CI)	(-)	0.058 1.461	0.230 2.500	0.198 2.070	

Table 6b. Logistic regression within the transition model of disability (Roland & Morris disability scale score \geq 12) during the last episode of LBP on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, previous jobs at risks, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	2.2155
OR	1.0	5.199	4.501	4.860	0.5289
(95% CI)	(-)	0.574 47.060	0.503 40.286	0.460 51.292	
$\sum[t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	-
OR	1.0	-	-	-	
(95% CI)	(-)				
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	9.3948
OR	1.0	4.052	0.658	0.986	0.0245
(95% CI)	(-)	0.816 20.116	0.095 4.539	0.165 5.875	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	4.0976
	1.0	0.730	0.238	0.440	0.2511
(95% CI)	(-)	0.214 2.485	0.054 1.046	0.120 1.608	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	9.7123
OR	1.0	0.134	0.185	0.321	0.0212
(95% CI)	(-)	0.026 0.690	0.046 0.741	0.095 1.078	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	9.9573
OR	1.0	9.876	1.991	2.470	0.0189
(95% CI)	(-)	1.185 82.332	0.200 19.783	0.262 23.272	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	1.3474
OR	1.0	0.737	0.464	0.587	0.7179
(95% CI)	(-)	0.211 2.580	0.119 1.816	0.159 2.177	
$\sum [a_{wgi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	5.9957
OR	1.0	0.277	0.235	0.408	0.1118
(95% CI)	(-)	0.068 1.135	0.059 0.944	0.121 1.371	

Table 7a. Logistic regression within the transition model of treated LBP in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily		Quartiles of measu	re of daily WBV exp	osure		LR test
WBV exposure						(χ ² , 3 <i>df</i>)
		Q1	Q2	Q3	Q4	
Daily driving time (h)	median	5.0	8.0	9.4	11.0	8.7005
	OR	1.0	1.282	2.252	2.611	0.0335
	(95% CI)	(-)	0.607 2.706	1.148 4.419	1.163 5.861	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	0.7607
	OR	1.0	0.730	0.897	0.886	0.8589
	(95% CI)	(-)	0.359 1.487	0.454 1.775	0.450 1.744	
$A_{\rm dom}(8) \ (ms^{-2} r.m.s.)$	median	0.18	0.32	0.39	0.53	1.4270
	OR	1.0	0.915	0.657	1.009	0.6992
	(95% CI)	(-)	0.476 1.758	0.304 1.422	0.506 2.010	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	2.1043
	OR	1.0	0.679	1.005	1.143	0.5510
	(95% CI)	(-)	0.326 1.413	0.500 2.018	0.585 2.234	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	1.9294
	OR	1.0	0.872	1.076	1.422	0.5872
	(95% CI)	(-)	0.411 1.852	0.541 2.139	0.747 2.708	

Table 7b. Logistic regression within the transition model of treated LBP in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative WBV exposure	Quartiles of measure of cumulative WBV exposure				
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	1.8534
OR	1.0	0.608	0.773	0.860	0.6034
(95% CI)	(-)	0.287 1.289	0.371 1.611	0.371 1.994	
$\sum [t_i] (h \times 10^3)$ median	4.6	16.7	34.9	60.7	2.2109
OR	1.0	0.947	1.529	1.433	0.5298
(95% CI)	(-)	0.430 2.085	0.697 3.352	0.605 3.399	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	0.3296
OR	1.0	1.126	1.156	1.269	0.9544
(95% CI)	(-)	0.532 2.385	0.530 2.521	0.561 2.873	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	1.4395
OR	1.0	0.645	0.768	0.763	0.6963
(95% CI)	(-)	0.311 1.337	0.381 1.547	0.366 1.588	
$\sum [a_{wsi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.29	1.2	3.3	14.1	0.4286
OR	1.0	0.919	0.809	0.984	0.9343
(95% CI)	(-)	0.456 1.852	0.399 1.640	0.490 1.979	
$\sum [a_{wgi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	1.3971
OR	1.0	0.708	0.794	1.004	0.7062
(95% CI)	(-)	0.341 1.471	0.376 1.675	0.470 2.144	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	1.3148
OR	1.0	0.658	0.871	0.835	0.7256
(95% CI)	(-)	0.319 1.358	0.433 1.753	0.402 1.737	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	2.2472
OR	1.0	0.579	0.907	0.891	0.5227
(95% CI)	(-)	0.275 1.219	0.461 1.784	0.447 1.775	

Table 8a. Logistic regression within the transition model of sick leave (> 7 days) due to LBP in the previous 12 months on alternative measures of daily exposure to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma, and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of daily		Quartiles of measure of daily WBV exposure				
		Q1	Q2	Q3	Q4	(χ, Sui)
Daily driving time (h)	median	5.0	8.0	9.4	11.0	5.6488
	OR	1.0	0.626	1.235	2.376	0.1300
	(95% CI)	(-)	0.199 1.971	0.484 3.152	0.866 6.518	
A _v (8) (ms ⁻² r.m.s.)	median	0.28	0.45	0.56	0.74	1.2931
	OR	1.0	0.865	1.371	1.450	0.7308
	(95% CI)	(-)	0.285 2.631	0.509 3.695	0.536 3.920	
A _{dom} (8) (ms ⁻² r.m.s.)	median	0.18	0.32	0.39	0.53	4.4175
	OR	1.0	0.615	1.603	1.688	0.2198
	(95% CI)	(-)	0.203 1.862	0.576 4.463	0.634 4.496	
<i>VDV</i> _v (ms ^{-1.75})	median	3.20	4.90	6.46	11.83	4.2801
	OR	1.0	0.713	1.426	2.019	0.2328
	(95% CI)	(-)	0.215 2.366	0.499 4.074	0.762 5.350	
VDV_{dom} (ms ^{-1.75})	median	3.26	4.56	5.81	10.34	4.1264
	OR	1.0	0.734	1.569	2.066	0.2481
	(95% CI)	(-)	0.208 2.586	0.571 4.310	0.813 5.249	

Table 8b. Logistic regression within the transition model of sick leave (> 7 days) due to LBP in the previous 12 months on alternative measures of cumulative exposure in most recent job, to whole-body vibration (WBV) in the professional drivers (n=230) over one-year follow-up period. Odds ratio (OR) and 95% confidence interval (95% CI) are adjusted for several covariates (Age, physical load factors, psychosocial factors, back trauma and follow-up time). Each measure of WBV exposure was included as a quartile based design variable, assuming the lowest quartile as the reference category. The likelihood ratio (LR) test for the measures of WBV exposure is given.

Measures of cumulative	Quartiles of measure of cumulative WBV exposure				
WBV exposure					(χ ² , 3 <i>df</i>)
	Q1	Q2	Q3	Q4	
Exposure duration (yr) median	3.2	10.1	21.6	34.8	0.4688
OR	1.0	0.709	0.771	0.744	0.9257
(95% CI)	(-)	0.246 2.045	0.277 2.143	0.233 2.375	
$\sum [t_i]$ (h ×10 ³) median	4.6	16.7	34.9	60.7	0.6751
OR	1.0	1.497	1.208	1.101	0.8790
(95% CI)	(-)	0.504 4.445	0.380 3.845	0.319 3.796	
$\sum [a_{wsi}t_i](ms^{-2}h \times 10^3)$ median	2.8	7.7	16.4	38.2	2.0108
OR	1.0	2.037	1.224	1.669	0.5702
(95% CI)	(-)	0.669 6.200	0.357 4.198	0.491 5.670	
$\sum [a_{wsi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	1.1	4.0	8.9	26.9	0.9347
OR	1.0	1.598	1.447	1.669	0.8170
(95% CI)	(-)	0.534 4.788	0.480 4.361	0.542 5.144	
$\sum [a_{wsi}^{4}t_{i}] (m^{4}s^{-8}h \times 10^{3})$ median	0.29	1.2	3.3	14.1	2.6162
OR	1.0	0.411	0.998	1.015	0.4547
(95% CI)	(-)	0.123 1.371	0.389 2.564	0.387 2.660	
$\sum [a_{wqi}t_i] (ms^{-2}h \times 10^3)$ median	1.95	5.60	12.16	27.73	3.5167
OR	1.0	2.240	1.085	2.083	0.3186
(95% CI)	(-)	0.743 6.751	0.306 3.847	0.633 6.857	
$\sum [a_{wqi}^2 t_i] (m^2 s^{-4} h \times 10^3)$ median	0.59	2.36	4.94	14.49	2.0308
OR	1.0	1.964	2.105	2.172	0.5660
(95% CI)	(-)	0.621 6.212	0.672 6.591	0.669 7.056	
$\sum [a_{wqi}^4 t_i] (m^4 s^{-8} h \times 10^3)$ median	0.1	0.36	0.99	4.09	3.5735
OR	1.0	0.344	1.192	1.070	0.3114
(95% CI)	(-)	0.091 1.309	0.469 3.027	0.405 2.827	